7%
university of 5%,
groningen % %

i

University Medical Center Groningen

University of Groningen

Effects of (partial) quenching on penguin contributions to K—1rr
Golterman, Maarten; Pallante, Elisabetta

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.69.074503

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Golterman, M., & Pallante, E. (2004). Effects of (partial) quenching on penguin contributions to K—1r1r.
Physical Review D, 69(7), 074503-1-074503-11. DOI: 10.1103/PhysRevD.69.074503

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018


http://dx.doi.org/10.1103/PhysRevD.69.074503
https://www.rug.nl/research/portal/en/publications/effects-of-partial-quenching-on-penguin-contributions-to-k(60f32db7-4fd4-4549-98d2-e7633966923a).html

PHYSICAL REVIEW D 69, 074503 (2004
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Recently, we pointed out that chiral transformation properties of strong penguin operators change in the
transition from unquenched tpartially) quenched QCD. As a consequence, new penguinlike operators appear
in the (partially) quenched theory, along with new low-energy constants, which should be interpreted as a
guenching artifact. Here, we extend the analysis of the contribution of the new low-energy constants to the
K°— 7% 7~ amplitude, at leading order in chiral perturbation theory, and for arbitfmymentum noncon-
serving kinematics. Using these results, we provide a detailed discussion of the intrinsic systematic error due
to this (partia) quenching artifact. We also give a simple recipe for the determination of the leading-order
low-energy constant parametrizing the new operators in the case of $tRopgnguins operators.
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[. INTRODUCTION but, in the case of penguins, they also depend on which
definition of the operators is chosen, since more than one
A reliable calculation of long-distance contributions to definition is possible.
nonleptonic kaon decay rates, and, in particular, toGle In fact, both lattice computationgl,2] did not directly
violating part parametrized by the quantity/e, has been a compute K— 77 matrix elements, buK— = (with M,
long-standing challenge. Ideally, one would expect such cal=My) andK—0 transition amplitudes, and used chiral per-
culations to be in the domain of lattice QCD, but in practiceturbation theory(ChPT) to convert them into the desiretl
many theoretical and numerical difficulties have made— 7 matrix element$4]. In Ref.[3] we explained how the
progress in this direction rather slow. Recently, however, twchiral properties of penguin operators change in the transi-
lattice collaborations have reported on numerical results fotion to the(partially) quenched theory, and how, in principle,
both the real and imaginary parts Al =1/2 andAl=3/2  more than one definition of a quenched penguin operator is
K—m matrix elements with a rather satisfactory control possible. Using ChPT, we traced how this affe€ts: 7= and
over statistical error§l,2]. These lattice computations were K—0 matrix elements. We restricted ourselves.t® pen-
done with the effective wealk S=1 Hamiltonian with three guins(i.e., Qs and Qg), because the effects in this case al-
flavors, i.e., with the charm integrated out, and they wergeady appear at leading order in ChPT, while they are a next-
possible because of the use of lattice fermions with goodo-leading-order effect foLL penguins. Because of the fact
chiral symmetry. Both groups reported values6fe which  that the ambiguity is already present at leading order for
are nonzero, and thus consistent with the existence of direchatrix elements 0Qs ¢, this may be an important issue for
CP violation, but of opposite sigiand comparable siz¢éo  &'/e (while it is expected to be less important for the real
the experimentally measured value. parts of theK — 77 amplitudes, and thus th&l =1/2 rule.
While statistical errors for these lattice computations In this paper we extend our ChPT calculations to the ef-
seem to be reasonably under control, this is not the case fdect of the ambiguity orK — 77 matrix elements, again to
a large class of systematic errors, which will need to bdeading chiral order. This is important for two reasons. First,
studied further in the future. One source of systematic errolattice computations may be done directly for 7 matrix
is the use of the quenched approximation. In a previous paelements, and their chiral behavior needs to be known in
per [3] we pointed out that, in addition to the fact that order to fit lattice results as a function of quark masses. Since
guenched QCD is just not the same theory as full QCD, aattice computations are typically done with unphysiga.,
ambiguity arises in theefinitionof the quenched version of energy and/or momentum nonconseryirignematics, we
penguin operators appearing in thes=1 effective weak present our results for the most general kinematics possible,
Hamiltonian. The ambiguity originates in the difference ofin both the quenched and partially quenched cases. Second,
the chiral transformation properties of penguin operator®nce the completéleading-order ChPT expressions foK
within the quenched and unquenched theories. This implies-0, K— 7r, andK— 77 matrix elements are available, it is
that not only will quenched lattice results be hampered bypossible to give a more detailed discussion of the systematic
the fact that we do not really know whether quenched valuesgrror introduced by the ambiguity in the definition of
of given matrix elements are close to their real-world valuesquenched penguin operators.
The paper is organized as follows. In Sec. Il, we review
the main observation of Ref3]. We show how & R pen-
*e-mail: maarten@stars.sfsu.edu guin, which transforms in an irreducible representation
Te-mail: pallante@he.sissa.it rep of SU(3) XSU(3)g, splits into two operators in the
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(partially) quenched theory, with each of them transformingthe u, d, ands fields in Eq.(2.1) represent valence quarks in

in a different irrep of thepartially) quenched chiral symme- the partially quenched theory, and the penguin operator can
try group. One of these irreps corresponds “naturally” to thebe decomposed s

single irrep of the unquenched theory, while the other irrep
can be considered as “new,” and an artifact of quenching.
We give the ChPT realization of all relevant operators at
leading and next-to-leading chiral order, introducing new _ _
low-energy constant$LECSs) which appear in correspon- +stA gy, PLStAYYy,Pr)
dence to the new irrep. In Sec. lll, we present our results for

3 — _
Qpenguin= N sti(A l/l{/l’yMPL)Stl’( lr/“//')/,u,PR)

KO— 7" 7~ penguin matrix elements to leading order in ZE PQS | PQA 2.3
ChPT, with general kinematics, and specialize these results N NQpenguin Qpenguin '
to physical(i.e., energy-momentum conservjnginematics.

In Sec. IV, we discuss different strategies available for using . 3 3 3 3
quenched lattice results to estimate real-wdfle> w7 ma- A=d|ag< 1- ﬁ’l_ N'l_ N’ N ' N/

trix elements and give some numerical examples. We provide

a simple prescription for determining the leading-order LEC Aij= 8150, (2.4

representing the new irrep in Sec. V, and Sec. VI contains

our conclusions. Some of this work has already been prewhere the first thredvalence entries ofA are equal to 1
sented in Ref[5]. —3I/N, and the nexN+ 3 (sea and ghosentries are equal to
—3/N. Here ¢ collects all quark fields in the theory)
=(0yi,0si,0gi). The tensorA projects onto the valence

(sd)_ term in the first factor 0Qpenguin- The motivation for
. o . splitting Qpenguinthis way is thaQiehe inandQp 3 inform
A Lagrangian definition for partially quenched QCD can gifferent representations of the partially quenched symmetry

be constructed as explained in Ri] (see also Ref.7] for group:QggnSguin(Qggngu“) transforms in the trivialadjoind

Il. REVIEW OF LR PENGUINS IN (PARTIALLY )
QUENCHED QCD AND CHPT

an alternative realization using the replica methad addi- irrep of SU(3+N|3)g. As a consequence, there are at least
tion to the valence quarks,;, i=u,d,s, with massesn,i, o different ways of embedding the QCD penguin operator
one introduces a separate set of sea quamks i nto the partially quenched theory. One is to choose the par-
=1,... N, with massesn;;, and a set of “ghost” quarks tjglly quenched penguin to be a singlet und&i(3

dgi, i=u,d,s, with masses equal to those of the valence+N|3)R, ie., QSSnSgum, as in the unquenched theory,

quarksmg;=m,; [8]. Ghost quarks are given bosonic statis-\yhereas the other choice is to use the original operator,
tics, such that the ghost-quark determinant cancels thghich is seen to be a linear combination of two irreducible
valence-quark determinant, thus leaving only the sea-quargperators_ This latter choice was made in REE]. In Ref.
determinant present in the path integral. Therefore, only se : : RQA

quarks propagate in internal loops. Pio] r_](;)ﬂa(rj]glst pengum_ opleraftors such(aﬁe_ngui:j_v(\j/erinot
Since partially quenched QCD thus contains more flavor&0nsidered, because singlet factors suchiasH(dd +ss)g

than unguenched QCD., its fiavor symmetry group is largel” Eqg. (2.1 had been implicitly extended to singlets under
q Q y y group 9e%he full (partially) quenched symmetry group. Therefore, the

than the QCD one. The full chiral symmetry group relevant ) .
for light meson physics is the graded extension of the orgi&nalysis of Ref[10] was not complete, and R¢B] and this

nary chiral groupSU(3+N|3), X SU(3+N|3) [6]. It is  Paper remedy this fokR penguins. pQS POA
graded because some of its elements transform fermions into 10 1€ading orderLO), the operatorfyehguin: Qpenguin
bosons and vice versa. The quenched theory, which has € represented in ChPT b§]

sea quarks at all, corresponds to the special basé [9]. PQS G (8.1)
We considelLR penguin operators of the form penguii— — a1 SAL L)+ a5 Usti(AX,), 25
B —— PQA ,
Qpenguir=(sd)_(UU+dd+s9)g, (2.1) Qpenguin— FPaOstAZAST), (2.6)
where
where

L,=i%d,3%, X.=2By(SMT+=M3"), (2.7
(A1092) R=A17,PLRA2: with M the quark mass matrixB, the parameteB, of Ref.
[11], S=exp(2d/f) the unitary field describing the par-

1 tially quenched Goldstone-meson multiplet, anthe bare
PLr=5(1% 7s), (2.2 pion decay constant normalized such that=132 MeV.
and color contractions are not specified, so Qgfnquincan 1in a theory withK valence quarks, all ratiosI8/get replaced by

represent botl)s andQg. As already pointed out in Reff3],  K/N.

074503-2
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The o’s are the corresponding LECs. Notice t@fg,i,, ~ and not on the quark masses themselves. Therefore, in the
unlike QP ghs in: is of orderp®, due to the fact that the right- N=3 partially quenched theory, what one should do is to
handed current i} &f.inis not a partially quenched singlet Omit Qpenyuin ltogether, because the aim is to obtain the
(cf. electromagnetic pengufsAs already observed in Ref. values ofa{%”, and not the (8,8) LEC&®® and g(#® 3

[3], the new operato; ong.indoes not contribute at the tree  The quenched cas&{=0, is different. In this case, the
level to matrix elements with only valence quarks on exter-decomposition reads

nal lines, since the matri& is effectively proportional to the 1

unit matrix in the valence sector. Indeed, replacikby the Qcb  _ = - -

unit matrix in Eq.(2.6) would make the operatF())r vangi;/h. This Qpenguin™ 5 SUA Yy, PLSUYY,Pr)

is no longer true at next-to-leading ord®&LO), i.e., at order — R

p?, where one-loop contributions fro@%34 . to valence- +stA gy, PLSTINGYy,PR)

- penguin
qguark matrix elements are nonzero.

Since the singlet-operator contributions also start at order = EQQeSn sk QANS (2.9
p?, the NLO contributions fromQp v in compete with the 2 <peng pena
LO contributions fromQp &y uin and thus need to be taken .
into account already in a leading-order analysiskof:0, N= Ediagl,l,l,— 1,-1,—1), (2.10

K— 1, andK — v matrix elements. This also implies that a

renormalization scale dependence already appears at leading .

order for those partially quenched matrix elements. Thawhere valence entries of are equal to;, and ghost entries

scale dependence is absorbed by M@gp?) counterterms are equal to- 3. The first operator in the decomposition is a

for QEQA - The complete list oEPSeven[4] operators is ~ Singlet underSU(3[3), while the second is notNS for
nonsinglel. However,Q e inCan transform into the singlet

operator, implying that the nonsinglet operators do not form

a representation by themselves. In other wo Nn%umcan

MIX iNt0 QSenguin: Which is possible becauseis not super-

(8,8)
1
PQA_ mstr(A{EAET,LMLM}),

(28,8) traceless, unliké\ in the partially quenched case. The ChPT
PQA= =y St(AL,SASTL,), realization of both operators is obtained from the expressions
(4) given in Egs.(2.6), (2.8 and by replacingA—N. When
88) referring to the quenched theory, we will add a subsaifat
@ QNS (8,8)
QRQA- - Zstr(A{EAET,X+}), t_h,eahl‘_SE(?gs.(’&gid L%narﬁethe LECs for Qgenguin @S @
q  Mi i

Within the fully quenched approximation, as also in the

(88) partially quenched case witN#3, there is no reason that
QF A= ﬂstr(A[EAET,X,]), the LECs should have the same values as those of the un-
a

quenched theory. In general, the nonanalytic terms are modi-

©8) fied by quenching, and even the scale dependence of LECs is

poa_ B5 different between the quenched and unquenched theories. It
SQ - (47)2 str(AEAET)str(LMLM), is thus nota priori clear what choice to make for the embed-
ding of penguin operators into the quenched theory. We will
(8.:8) return to this issue in Sec. IV below.
QPA= % st ASAS Hsti(X,),
(477')2 Il. NONSINGLET K°— =zt %m~ MATRIX ELEMENTS
WITH GENERAL KINEMATICS
(88)
QPRA= P ig, StA[SASTL,]), (2.8 In this section we present the partially quenched and
(4m)% " quenched results for the contribution of strong penguin op-
erators to theK®— 7+~ matrix element to ordep? in
where we introduced th®(p?) LECs B(ff'_s_)_ 7 ChPT. We will restrict ourselves to the isospin limit in the

The partially quenched theory witd=3 light sea quarks valence sectom,,=m,q4, Not assuming momentum conser-
represents a special case. Rbr 3, the LECs of the partially  vation, so thaf# p;+ p,, with q the (ingoing) K® momen-
quenched theory must be the same as those of the physicalim andp, (p,) the (outgoing 7% (7~) momentum. All
unquenched theorfi 2], basically because they represent themomenta are on shell and we work in Euclidean space, i.e.,
coefficients in an expansion in powers of quark masses and
thus depend only on the number of dynamitsda quarks,

3As long as one does not consider electro-magnetic penguin con-

tributions.
%In fact, Q) enguiniS @ component of the same irrep as the electro- “In the quenched theory there is no relation betw@Epy i, and
magnetic penguin, except foé=0 [3]. the electromagnetic penguif3].

074503-3
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pi=p3=—MZ, g>=—MZ. M,,; (M) is the mass of a
meson made out of thgh valence quark and thi¢h valence

(sea quark. In all results presented below, we have symme-

trized the expressions in the pion momeptaand p,.
For the contribution of the singlet operator in Eg.5) a
simple tree-level calculation yields the ordet result

(m* | QPRIKP)

4i
=@ ‘81)(2q(p1+p2)+p1p2 PV
1 2p;pa+a(py+py)—2M2
2 2 T
X(ME=M2)| 145 —— == .
(q=p1—P2) +Mi—ie

PHYSICAL REVIEW D 69, 074503 (2004

Q@<—bk6<

FIG. 1. One-loop diagrams with the insertion of the nonsinglet
operator at the weak vertgkox) contributing toK®— 7+ 7~ with
general kinematics.

Note that the contribution proportional tdf'l) vanishes for
energy-conserving kinematics, because the corresponding
operator can be written as a total derivative by using equa-
tions of motion[4].> We put in ani e prescription in the last
term of Eq.(3.1) because it is needed in the linitx—M .,
after continuing the external momenta from Euclidean to
Minkowski space by setting®= — Mi, etc®

As mentioned before, the tree-level contribution from the
new nonsinglet operator in E(R.6) vanishes. At one loop, it
contributes at ordep?. For general kinematics, we obtain, in

(3.)  the isospin limit,

1
(7" 77 |QPRAKO) 100p= E[-A(q;p17p2)+«4(q;pz,p1)],

8.8 2M2 +qp;
A(g; pl,pz>— al >2 3(P1P2—M2)I[ M5, M5, (p1+p2)?]+ e p) [L(M3s)—L(M55)]
ise — 1
(qp1+MK)(qp1 M2) (2p1po—2qpy+4qp,—2M2)
I[M%6i . M3q;, )%+ : L(M3s) —L(M3;)
(q—p1)? [Mzsi- Masi- (9= P01+ (q—p1—pa)2+M2—ie [ (M3gi) =L (M2
- E (Mjsi_)ijiv J:213)1 (32)

ighost

where we used thal3,,— M2,=M2—M?2 at this order, and sea quarks at all, one simply drops the sum over sea quarks
in Eqg. (3.2, keeping only the sum over ghost quarks, and
LM?) f dP¢ 1 replacesa®®— a/®. There are no contributions from’
(2m)0 €2+ M2’ double poles.

The newO(p?) counterterms in Eq2.8) give, again for
dPe 1 general kinematics,
(2mP (L2+MD[(L—p)*+M3]’
(3.3

whereD is the number of space-time dimensions. Explicit
expressions for these integrals are given in the Appendix.
The one-loop diagrams contributing to this result are dis-
played in Fig. 1. In particular, the vacuum-tadpole diagram
(last diagram in Fig. Lgives a nonzero contribution for gen-

eral kinematics which corresponds to the next-to-last line of
Eqg.(3.2). In order to obtain the fully quenched result with no

2 M 12 2y
I(M1,M3,p%)= J (7" w7 |QPRAK )

4i

4
—3BEME-MD)

1
X EQ(pl"‘ P2)+ P1P2

1 2p1po+q(py+py) —2M2

X1+ =
( 2 (q—py—pa)?+Mi—ie

] . (39

SRecent results for this matrix element for special unphysical ki-
nematics relevant for the extraction of LECs from the lattice can be €In particular, a(s D does not contribute in that limit, as already
found in Ref.[13]. observed in Re1[14] For a more detailed discussion, see R&5).
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The structure of these contributions is such that the scale 4i

dependence contained in E§.2) can be fully compensated (m* | QPOIKO)PIYE= — aBYMZ-M2), (3.9
by the LECsB®®, i=1,2,3. It is easy to verify that the 2

other LECsB®®, i=4,...,7, do notontribute. Since ex-

ternal legs contain only valence quarks, the tree-lekel <7T+7T_|QPQA|KO>Eh|%Sop

— arar matrix element does not involve the diagongl ele-

ments of the tensok, with i referring to a sea or ghost quark. _ a(s 8)2 { _ M2 I(M ~M2)
This implies that, for this calculation, we may replassvith 3f3 e 2si-Masi — M
the unit matrix, and the operato3”°” in Eq. (2.5 for i

=4, ... ,7vanish, while they become proportional to the op- 3 M"’

2 2
erators in Eq.2.5 for i=1,2,3. It follows that the LECs —| 5 —5 —3MZ | 1(M%; . M%;, - M2)

2 |\/|2 ™
oY together with3%?) will always appear in the specific
combmatlons 3 M2
"z 3 [L(M35)—L(M30)]
3 e (-3t (2891 gED),
N N/ (am)? _
= > (Mjsi—=Mjyi, =23, (37
3 3 5 ighost
Y ( _ _> (8.8)
ay '+ 1 (3.5
N2 N/ (am)2™? (m* 7 |QPRAKORMS
for all tree-level matrix elements with only valence quarks —4j 3 o8 - 5 5
on the external legs. For the analogue of E85) in the 201N 2839+ B (Mg—M2).
guenched case, one replaces the facter3MN by 1/2, (47°)
(3/N)ai(8‘1)—>(1/2)a$’1), a(a’g)—wygs, andﬁi(s’g)ﬂﬂglis. (3.9

We conclude this section with the expressions for the
same matrix elements in the case of “physical” kinematics,Dropping the sea-quark terms and carrying out the sum over
i.e., with the choiceq p1+ p2 Settingq=p1+ p, and us- ghost quarks, we obtain a more explicit expression for the
ing that g>=—M?Z and p?=p5=—M?2, one obtains from one-loop contribution in the quenched case, in the modified
Egs.(3.1), (3.2, and(3.4) MS schemdsee Appendix

+_—1AQN 0\phys 2 2 MET ﬁ 2 & Mi 2 Mi
(7 |QUNIKOEE = o2 ay > 1AMy Mw)log—A2—6—M2(M —M2)+ 4—2—M2+2|v|K Iog—M2
ME M 2M2Z2— M2
2 2 K T
+(W_6_2+1OMK_4MW IOQT

| am? g
+2ME| F(M2 M2 ,—=M2)=2imO(Mz—4M2) \[ 1— 23 3)
K
M4
+| 2 ~2MK [[2F(MT MR = M)+ F(ME2ME=MZ =MD, (3.9
where the functiorF is given in the Appendix.
|
IV. STRATEGIES FOR QUENCHED ESTIMATES ever, the fact that those numerical results are still obtained in
OF REAL-WORLD PENGUIN MATRIX ELEMENTS the quenched approximation introduces a source of system-

atic error which is in principle uncontrolled. As already ex-
Recent numerical estimates Bf— w7 matrix elements plained, the LECs of the quenched theory do not have to
reported in Refs[1,2] have been obtained via thedirect  have values equal to those of the unquenched theory. Typi-
method, where the simplé¢— 7 andK—0 transition am- cally, even the scale dependence of quenched and un-
plitudes are computed on the lattice and then converted intquenched LECs is not the same; it depends on the number of
estimates forK — 7o matrix elements using ChPT. How- light dynamical(sea quarks in the theory.
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In the case of penguin operators, an additional ambiguity (2) Drop all the nonsinglet operators. It was shown in Ref.
arises because it B priori unclear whether it would be best [3] that this can be done by dropping, in the fully quenched
to take matrix elements @geCanuin! i.e., a linear combina- case, alleyediagrams in which the right-handed quarks in
tion of Q85 4uin@nd QNS | as 'in Eq.(2.9), or to drop the  Eg.(2.1) are contracted. This can be easily deduced from Eq.

contribution fromQ®N® under the assumption that3" is (2.9 This strategy was explored f@g in Ref.[16]. (For the
the best estimate 05(18,1). partially quenched case, see below. o .
In order to discuss possible strategies in more detail, we (3) Pérform a complete quenched calculation including all

first recall the leading-order ChPT expressionsker 7 and contributions from singlet and nonsinglet operators. After ex-
tracting all the LECs, singlet and nonsinglet, one can use the

K—0 matrix elements of strong penguin operators, from )

Ref.[3]. In the quenched approximatioN&0) one hab sum of Eqgs.(3.6), (3.9, and the quenched version of Eq.
(3.9 to determine the quenchd¢i— 77 matrix element at
the physical point.

4|v|2{1 03 460, Strategy 2 isolatea 5"
D_ L6
f2

g1~ » and might thus appear to be the

5(%1 a2 obvious choice, since it is this LEC that is needed for calcu-
lating theK — 7r7r matrix elementto chiral leading orderin

] the unquenched theory. However, as we already mentioned,

(7 1QSSB K )= 5

pengui

the values of LECs in the quenched and unquenched theories
do not have to be equal, and it might happen tl@tsome
(4.0  scale A) the quenched combinatiodaly?—[1/(4m)?]
X(Byr+3BY), determined from strategy 1, is indeed a bet-
QCD [0 ter estimate ofx{®?. Strategy 2 can be viewed as the situ-
<0|QpenguirlK > . : ; ! ; .
ation in which the strong interactions are quenched at all
4i[(1 gy 1 el scales between the weak and hadronic scales, because in that
=71 3%z + 5Bgs | (Mk—M7) case only singlet penguin operators would appear in the evo-
(4) lution from the weak to the hadronic scale. So, while, on the
one hand, it appears natural to assume only a mild flavor
' (4.2  dependence of the LECs, in particukef®”, one might, on
the other hand, argue that it is better to calculate the evolu-
tion from the weak to the hadronic scale in the unquenched
whereMc=M _=M in the case of thd— = matrix ele- t_heory, even if th_e matrix element at the _hadr_onic scale is
ment, and contributions of both singlet and nonsinglet operalin@lly computed in the quenched approximation. The key
tors are included. Notice that only tiiguenched versions of PCINtis thatit is impossible to decide which strategy is best.
the) combinationg3.5) of LECs appear in these expressions, The exception to these observations is the case of partially

as expected. Assuming that one can limit the analysis to leadlu€nched QCD in which the number of light sea quarks is

ing order in ChPT, there are at least three different strategie€dua! to that of the real world, in whictN=3. In the par-

for estimatingk — 7 penguin matrix elements from LECs ually quenched theory, the singlet operatofdé Eq. (2.3)]
obtained by fitting Eqs(4.1), (4.2) to quenched numerical

1
| e e ol

+als X [L(M3,)—L(M%)]

4 ivalence

results. POS _E - = — _
(1) Ignore ey °, but not the other LECs associated with Qeenguir=py (S| Uotho + o +5,5,
the nonsinglet operatoyy, 5. Both By and B+ 3 8ys
are scale dependefihowever, their sum is not, as can be +> asiqsi+igug+agdg+§gsg . (4.3
seen from Eq(4.1)], implying that this strategy is scale de- [ R

pendent. However, it still makes sense in case the nonana-
lytic contribution proportional tmg‘s [cf. Eq. (3.7)] is nu-  where the subscripts, s, and g denote valence, sea, and
merically small compared to all other contributions at aghost quarks, respectively. Strategy 2 now corresponds to
reasonable scald of order 1 GeV. Thus, the linear combi- dropping all diagrams in which the right-handed valence and
nation 3 a(§V—[1/(4m)?](BY;+ 3 BYy5) is taken as the best ghost quarks in the second factor of 4.3 are contracted
estimate for the unquenched®?, and Eq.(3.6) can then be [3]. If the number of sea quarké= 3. (but with the sea- and
used to obtain the physic&— 7 matrix element(at the  valence-quark masses not necessarily gquile singlet
tree leve). This is the strategy followed in Ref§l,2]. In  LECs (%" are those of the real worlfl2], and therefore
fact, in that work, it was assumed that the contribution pro-strategy 2 is the only correct one in this case.
portional toQES in Eq. (4.2) is small. For any other case, fully quenched or partially quenched
with N+# 3, there isa priori no preferred choice; the spread
in results obtained by employing all three strategies should
"We take the opportunity to correct the corresponding results oP€ taken as alower bound of thg systematic error due to
Ref. [3], where the factor 1/2 in front @2 . in Eq. (2.9, as  guenching. The extent to which strategies 1 and 3 lead to

penguin

well as the factor 3 in front of QFSy in in Eq. (2.3), were not  numerically different results depends on the sizer P con-
taken into account consistently. tributions (at a given scale\). From Eqgs.(3.6), (3.9) we
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find, taking physical values for all parameter$/ valence-quark masses at their physical valireshe isospin
=500 MeV, M,=140 MeV, f=f_=132MeV, M, limit), and choosing the two sea quarks to be degenerate in
=770 MeV, andM =550 MeV, that mass. Takingnse.=m,=my, we find

. O —
_I[K —>7T+7T ]q _i[KO_’W+7T_]N:2

2
(A=1 GeV)

1
— 8,1 27,1
—400.7(—agl )=l

T(-127-7.2)ag® =4oo.7(;a‘18’1)— a(27'1)) —0.9%% (A=1 GeV)

3
= 400.7( S afP = al??

(8.8) =
=400 7(15353'1)_ aéﬂ,l) +0.4a (A=M))
12

+(—8.7-7.2)ay®

(A=M,) 3
’ =400.{§a(18'1)— @70

+(~3.6-7.2)al (4.5

+2.1288  (A=M,),
1
=4oo.7(§ag8lvl>— alf™

(A=M,), (4.4  whereas takingnse ;= ms we obtain

where we added in the tree-level ChPT contribution from the
SU(3), 27-plet operatof4]. If ay®is of the same order as
3a3P—al™, the contribution of the terms proportional to
ay®is indeed small. The smaliness of the coefficientff

is due to a 1/(4r)? suppression factor coming from the loop
integral, and one might argue thaf'~/(47)? is the “natu- (A=1 GeV)

ral” parameter to compare with al;"—a{?"Y, in which

_i[KO—>W+W7]N:2

3
:400.{71(1&1)— a(27’1)) +(—10.8-7.2)a®®

case the contribution would not be small. Notice also that a 3 & )

small spurious imaginary part is generated by the nonsinglet :400-7<§a(18’ ) a(27,1)) +(-9.5-7.2)a®®
operator via the ghost-pion one-loop rescattering diagram. It

is clear that the value afy > will have to be determined from (A=M,)

a lattice computation. While this can be done by including
the oy ° terms, of, e.g., Eq4.2), in a fit to lattice data, there

3
exists a much simpler and more reliable way of estimating =4OO.{§a(18'1)— a(27,1)) +(~7.8-7.2)a®®
the size OfanS, as will be explained in the next section.
Under the assumption thalg‘S can be neglected without (A=M,). (4.6)

introducing a large uncertainty into the final estimate of

strong penguink — 7 matrix elements, t?sgl)qolielsz?ar’\l)re- Recall that for theN=2 theory the values of the LECs do
2

mains whgthe{ltso I?a?\lmg order in ChPIT; g 27al not have to equal those of thé=3 theory. However, the
_(%11/)(477) 1(Bar+ 5'8115') would be a better estimate of o ially quenched theory with two light sea quarks is closer
aj . The issue was investigated in RE6], where itwas  { the real-world theory than the quenched=(0) theory.
found that the difference between the two choices is numerirhis is reflected by the fact that the coefficientsaé?® are
cally significant. At the physical kaon mass, the numericalg,4 compared to those af'Sin Eq. (4.4). Notice in addi-
value of theB parameter corresponding @ turns outto be 0 that in theN=2 case, (\]Nithmseazm =my, the small
approximately twice as large when the contribution of thespurious imaginary part vanishes, sinttl:e it comes entirely

nonsinglet 0per""w@ge’\‘nsguini,S omitted altogether. Translated from the pion-rescattering loop diagram where the sea-quark
|nt08est|mates for the leading-order LECs, this |mpI|§s thatontribution is now fully cancelled by the corresponding
;a3 is approximately twice as large agal}V ghost-quark contribution.

—[1/(4m)2)(By+3By). This may lead to substantial ~ |n the case oN=3 sea quarks with masses equal to the
modifications in quenched estimatessdfe, as discussed in  three valence quarks, ghost- and sea-quark contributions in
Ref. [5]. Egs.(3.2), (3.4) cancel’ as they should, because this choice

We emphasize that the whole discussion here is based af parameters corresponds precisely to unquenched QCD.
leading-order ChPT, and that NLO contributions may still

lead to a substantial correction. However, it is reasonable to————

believe that NLO effects will not invalidate the basic content 8the factor 3/2 comes from the facto\8in Eq. (2.3).

of our observations. %In Eq. (3.4) the cancelation already occurs by just settiNg
Finally, we give a few more numerical examples of the =3, because in this tree-level expression the sea- and ghost-quark

partially quenched case withN=2, always keeping the masses do not appear.
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V. HOW TO DETERMINE ags ON THE LATTICE Qgé\‘nsguinv ?_nd in partic-u|ar, to |eading.order’ byg‘s_ We
then consider the matrix element of this operator between a

In principle, it is possible to determine)> from matrix . == .
P P P fermionickaon Ko dyss and the vacuum. To leading order,

elements with only physicalvalence particles as external

states. For instance, given good enough statistics and a wide

enough range of quark masses, it can be determined from a (0]QRanguid K)=2if agy >+ 0O(p?), (5.2

fit to Eq. (4.2). However, as also pointed out in Rg2], the

logarithmic terms in Eq(4.2) can look very linear in the s isolatingzNS. Carrying out all quark Wick contractions,

typical range of quark masses used in lattice computat|on§Jne finds thatq

making it hard to disentanglea)® from a3V

+[1/(4m)?18%Y. It would therefore be preferable to deter-

mine S from a matrix element to which it contributes at <O|Qpengwr(y)d(x ¥55(x)[0)

orderpg, because no other operators can “contaminate” the - _

result at that order. ==t ys5(s(x)s(y))v,,PL{d(y)d(x))]
It is very simple to do so, by considering matrix elements

with ghost quarks on the external lines instead of valence

quarkgs Sin?:e this corresponds to a flavor rotation on the Xt v, PR(u(y)u(y)) +{d(y)d(y)) +(s(y)s(y))

external lines, one needs to rotate the oper@mt, i, ac- ~ N N IRy

cordingly. A key point is that, while of course ghggltnquarks +(u(y)u(y))+<d(y)d(y))+<s(y)s(y))]]

are not explicitly present in a quenched computation, their

~t S Pr(s(y)s( P, (d(y)d(
propagators are identical to those of the valence quarks, Tys(SOOSY)) 7uPR(SY)S(Y)) 7, PLLA(Y)d0))]

which are available in the actual computation. T+ 3(X)S d(y a_
So, in order to determiney®, we propose to consider the [75(s005(9))7,PL{d(y)d(y))
following matrix element. First, we rotat@ayguin by an X)/MPR(G(Y)a(X))]}’ (5.3

SU(3|3), rotation into

~ S where the traces are over spin and color indices only. A key
Qpengu'“ (Syﬂp'-d)Str(NWMMPR)' 5.1 observation is now that ghost propagators and valence propa-

This operator is in the same irrep of the gro8pJ(3|3),  gators are equal flavor by flavqra(y)a(x)>=(d(y)E(x)),
X SU(3|3)g and is thus parametrized by the same LECs a®tc. Using this property, Eq5.3) simplifies to

(O1QANS 1 y)d(X) y55(X)]0) = — ] y5(S(X)S(¥)) ¥, PL{A(Y)d(X)) 1t 7, PRL(u(y)u(y)) +(d(y)d(y)) +(s(y)s(y))]]

1 - - _
+ 5t ys(s0)S(Y)) v, Pr(s(Y)S(Y)) v, PL(d(y)d(x))]

1
— 5t ys(s(x )S(¥)) 7, PL{d(y)d(y)) 7, Pr(d(y)d(x))]. (5.4

We conclude that it is possible to estimza]tgS as a leading-
order effect using only combinations of contractions of
valence-quark propagators. For tke-»0 matrix element of
Quin[cf. Es.(2.9), (4.2)], the contractions in terms of 'enormalizationZ is defined bydyss= VZK.

valence quarks are of the same form, but the first two terms The analysis for a similar determination af®® in the
have the opposite sign, while the last term has the same sigsartially quenched theory is analogous. There, of course, the

as in Eq.(5.4). Since theK—0 matrix element is of order observation is not new, since®® is also the leading LEC

making it even easier to determiraé\q\'S The wave-function

p?, we may combine the two results to obtain for the electromagnetic penguifwhich in the partially
— — quenched theory with=1 is in the same irrep a®}3fuin
—tlys(s(X)s(y)) v,PL(d(y)d(y)) of Eq. (2.6) [3]]. The main differences between a determina-
- tion of «(®® anda\S are that, firstaYS is not related to the
X v, Pr{d(y)d(x q ' q
7uPR(A(Y)d00) amputates electromagnetic penguin in the quenched d@&eand sec-
= \/Z(<O|Q§e’\'nsguiAR>+<0|Q§§n~°éu"“<> ond, that in order to determine it using leading-orflerthis
NS 5 caseO(p®)] ChPT, one is forced to consider ghost quarks, as
=Z(2if a5+ 0(p?)), (5.5  we did above.

074503-8



EFFECTS ORPARTIAL) QUENCHING ON PENGUIN . .. PHYSICAL REVIEW 69, 074503 (2004

VI. CONCLUSION [5,16]. A leading-order analysis of currently available lattice
n thi tinued . tigati fh bi data[1,2,16 seems to indicate that quenched lattice compu-
n this paper, we continuéd our investigation ot th€ ambl~ o5 cannot even confirm that this parameter is nonvanish-

guities afflicting strong penguin contributions ®— a7 0 in the standard model. It could also be that the large
weak matrix elements due to the use of the quenched aliumerical difference found betweeha®? and LoD
2

proximation 21(gNS. 1 gNS) ql ql
: ) ) —[1/(4m)°](Bqr+ 2B42) would be explained by the fact
The fagt that the way oér_nbe_ddlngaengum operators_ of that higher orders in ChPT have not been taken into account,
the effective weak Hamiltonian in the quenched theory is no, t e consider this to be unlikely. While it is clear that
unique tells us that, in the enlarged context of electroweakigher orders are numerically important, there appears to be
interactions, the usual definition of the quenched theory i$, reason to assume thﬁ'@'s+ 18NS is small. It could also
not complete. If only strong interactions are considered, it isDe thataNS  which appear; irh(o—q>20 and needs to be sub-
sufficient to define quenched QCD as the modified version o{ a1 (81 21¢ pNS, 1 N +
) . . . racted to obtai “—[1/(4 + 5 from K
QCD in which the quark determinant is set equal to a con- =+ ré“ql [1/(47)°)(Bqz zﬁqzs)

: : L . — ", is not small. This would affect the determination of
stant. A field-theoretic definition can be given through the: (s1)

21 NS H :
) . . ; L 2aqy +[1/(4m)°] B43 and hence the size of the subtraction.
introduction of ghost quark_s into the path inteddl, 9VINg * 1t is therefore important to obtain a reliable estimatexﬁfs.
access to a complete picture of the symmetries of th

; e suggested a simple method for extracting its value.
quenched theor{Q]. As soon as one considers operators ex- 99 P g

. " . X The above argument doest imply that lattice computa-
ternal to QCD(i.e., the addition of electroweak interactions 9 Py P

h h ion h h h L&ans ofe’/e are doomed to fail. On the contrary, quenched
one has to answer the question how these operators shoWdsimates of’/e with a particular choice for the strong pen-
be incorporated into the quenched theory. Usually,

this i%)jins demonstrate that this computation is feasible, thanks to

straightforward. One classifies the operator by its ﬂavormajor advances in both theory and computational power.

quantum numbers, in other Wprds, one determines the irreﬁowever, what will be needed in order to eliminate system-
of SU(3)_ X SU(3)g under which this operator transforms. aic errors due to quenching is a partially quenched study

If there exists a larger irrep of the quenched symmetry group iy, N=3 light sea quarks. This is the only approximation to

which reduces to the unquenched irrep, the CorreSpondinéinquenched QCD which is reliable in that it can be extrapo-
component of the quenched irrep can be taken as th@

hed definiti f th in th ted systematically to the real woilldi2]. Currently existing
quenched de .|n|t|on of the °perat°f- H_owever_, In t € Case Ohyenched results give us invaluable information on what is
strong penguins the operator, while irreducible in the un-

. X L needed to promote them to the requirde=3 world. For
guenched theory, is a linear combination of components Ofgartially quenched QCD witiN+#3, the situation is essen-

more than onerrep of the quenched symmetry group. There'tially the same as for quenched QCD, modulo differences in
fore each LEC of the unquenched theory corresponds to a sqLtail

of LECs in the quenched theory. The ambiguity arises be- Summarizing, we presented the quenched and partially

Caltj.se tr}ere I8 E”g”l_gggf”ter'on forldwh'clz ltlr?eag C(t)mbt'.' quenched results for the nonsinglet contribution to ikfe
hation of quenche any) would yie ebesteslti- _ 7+7- matrix element. This made it possible to discuss in

mate_dof tf(ljehunquendchedRLgC.thl_n thﬁ caselL &l penggms detail various strategies one might follow to use quenched
considered here and in ReB], this phenomenon produces computations in order to estimate the real-world value of this

an effect already at Iead[ng ordgr in ChPT. amplitude. Sincea® contributes to this matrix element,
We remark that even in the simplest case when there e%i q

T N " . .
ists a one-to-one correspondence between unquenched lét not to theK™ — 7 transition amp_htu_de used in Ref.

. ; : ,2], this introduces an additional ambiguity already at lead-
qguenched irreps, there is still the freedom to choose an

component of the quenched irrep, and this flexibility can be"Y chiral order. The importance of this ambiguity depends

used to extract LECs in the most convenient Way]. How- on the size ofxg ™ and we have proposed a simple recipe for

ever, in this case there is no ambiguity in the relation beltS detérmination. Our expressions 6P — 7"~ with the

tween unquenched and quenched LEE€gen though their most general pqsmble kinematics and the inclusion of the
values may diffex. This is in principle not different from the NOnsinglet contributions are appropriate for the analysis of
situation within the unquenched theory, where in general an§l'éct quenched computations of this matrix element at lead-
component of an irrep can be used to extract the correspondd order in ChPT. Beyond leading order, new problems arise

ing LEC. A classic example for weak matrix elements is thel 1419, which may invalidate current methods for thieect

relation betweeB, and thek * — 7+ 7° decay rat§18]. (At determination of Kgmr amplitudes with Al=1/2 in
nonleading order, it may not be possible to determine alflu€nched and partially quenched QCD.

LECs describing an operator in ChPT from one process, of
course).

The ambiguity affecting penguin operators is fundamen-
tal, since there exists no solid theoretical argument that can We would like to thank Norman Christ, Chris Dawson,
be used to decide the issue. Therefore, we argue that odack Laiho, David Lin, Bob Mawhinney, Martin Savage,
should compare all choices that can be reasonably made, asdeve Sharpe, and Amarijit Soni for discussions. M.G. thanks
take the resulting spread of estimated values as a lowehe Institute for Nuclear Theory at the University of Wash-
bound on the systematic error due to quenching. It appeatisgton for hospitality, and E.P. thanks the Department of
that in the case o&'/¢ this systematic error is rather large Physics and Astronomy at San Francisco State University for
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APPENDIX

Renormalized“modified m”) expressions are obtained by
dropping the contact terms in square brackets.
For p>>0, the argument of the logarithm in E(A3) is

In this appendix we collect explicit expressions for thepositive, andi is real. Forp><0, F is obtained by analytic

basic loop integrals appearing in E§.2), etc. Using dimen-
sional regularization, we have

dP¢ 1
(2m)P €2+ M?

L(M2)=J

M 2
1672

—;+y—1—log4w

M2
+ |ng) ,
(A1)
whereA is the running scales=4-D, and

Rel(M2,M3,p?)

=—ReJ'
1
1672
2
1

1-—+— Iog—+EF(M§ M2,p?)
p> p?) "M; 2

dPe¢ 1
(2m)P (£2+M)[(€—p)?+M3]

2 M3
-t y—1-log4mw —1+IogF

(A2)

in which

F(MZ,M3,p?)

M3 M3
1,—2.—2
p= p

= A

P2+ M2+ M2+ p2\\ (1 MZ/p2, M2/ p?)

X log

P2+ M2+ M2— p2\(LMZ/p2, M2/p?)

continuation.\ (1,M2/p2,M3/p?) turns negative for— (M,
+M,)2<p?<—(M;—M,)?, and we find that is still real
with F now given by

1,_, -

F(Mi,Mé,p2>=2\/—x -
p= P

—p?N=N(1LM%p?,M%p?)

Mi M3

X arctan
p?+M2+M3

(A4)
At p?=—(M2+M32) the argument of the arctangent has a

singularity, across which the branch of the arctangent has to
be chosen continuously:

—pZ\/—)\(l,Milpz,Mg/pz)

arctan
p?+ M2+ M3

—p2\= N1 MZ/p2,M%/p2?)

T~ 1T,

= Arctan
p?+ M3+ M3

p?<—(M2+M3), (A5)
where Arctan denotes the principal value of the arctangent.
Again continuing analytically across?=—(M;+M,)?, F

is again given by Eq(A3), but 1(M2,M2,p?) picks up an
imaginary part:

ImI(M$,M3,p%) =~ ——m \/ A

1672
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