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Effects of „partial … quenching on penguin contributions toK\pp

Maarten Golterman*
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Elisabetta Pallante†

SISSA and INFN Sezione di Trieste, Via Beirut 2-4, I-34013 Trieste, Italy
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Recently, we pointed out that chiral transformation properties of strong penguin operators change in the
transition from unquenched to~partially! quenched QCD. As a consequence, new penguinlike operators appear
in the ~partially! quenched theory, along with new low-energy constants, which should be interpreted as a
quenching artifact. Here, we extend the analysis of the contribution of the new low-energy constants to the
K0→p1p2 amplitude, at leading order in chiral perturbation theory, and for arbitrary~momentum noncon-
serving! kinematics. Using these results, we provide a detailed discussion of the intrinsic systematic error due
to this ~partial! quenching artifact. We also give a simple recipe for the determination of the leading-order
low-energy constant parametrizing the new operators in the case of strongLR penguins operators.

DOI: 10.1103/PhysRevD.69.074503 PACS number~s!: 11.15.Ha, 12.15.Ff, 12.38.Gc

I. INTRODUCTION

A reliable calculation of long-distance contributions to
nonleptonic kaon decay rates, and, in particular, to theCP-
violating part parametrized by the quantity«8/«, has been a
long-standing challenge. Ideally, one would expect such cal-
culations to be in the domain of lattice QCD, but in practice
many theoretical and numerical difficulties have made
progress in this direction rather slow. Recently, however, two
lattice collaborations have reported on numerical results for
both the real and imaginary parts ofDI 51/2 andDI 53/2
K→pp matrix elements with a rather satisfactory control
over statistical errors@1,2#. These lattice computations were
done with the effective weakDS51 Hamiltonian with three
flavors, i.e., with the charm integrated out, and they were
possible because of the use of lattice fermions with good
chiral symmetry. Both groups reported values of«8/« which
are nonzero, and thus consistent with the existence of direct
CP violation, but of opposite sign~and comparable size! to
the experimentally measured value.

While statistical errors for these lattice computations
seem to be reasonably under control, this is not the case for
a large class of systematic errors, which will need to be
studied further in the future. One source of systematic error
is the use of the quenched approximation. In a previous pa-
per @3# we pointed out that, in addition to the fact that
quenched QCD is just not the same theory as full QCD, an
ambiguity arises in thedefinitionof the quenched version of
penguin operators appearing in theDS51 effective weak
Hamiltonian. The ambiguity originates in the difference of
the chiral transformation properties of penguin operators
within the quenched and unquenched theories. This implies
that not only will quenched lattice results be hampered by
the fact that we do not really know whether quenched values
of given matrix elements are close to their real-world values,

but, in the case of penguins, they also depend on which
definition of the operators is chosen, since more than one
definition is possible.

In fact, both lattice computations@1,2# did not directly
compute K→pp matrix elements, butK→p ~with Mp

5MK) andK→0 transition amplitudes, and used chiral per-
turbation theory~ChPT! to convert them into the desiredK
→pp matrix elements@4#. In Ref. @3# we explained how the
chiral properties of penguin operators change in the transi-
tion to the~partially! quenched theory, and how, in principle,
more than one definition of a quenched penguin operator is
possible. Using ChPT, we traced how this affectsK→p and
K→0 matrix elements. We restricted ourselves toLR pen-
guins ~i.e., Q5 andQ6), because the effects in this case al-
ready appear at leading order in ChPT, while they are a next-
to-leading-order effect forLL penguins. Because of the fact
that the ambiguity is already present at leading order for
matrix elements ofQ5,6, this may be an important issue for
«8/« ~while it is expected to be less important for the real
parts of theK→pp amplitudes, and thus theDI 51/2 rule!.

In this paper we extend our ChPT calculations to the ef-
fect of the ambiguity onK→pp matrix elements, again to
leading chiral order. This is important for two reasons. First,
lattice computations may be done directly forK→pp matrix
elements, and their chiral behavior needs to be known in
order to fit lattice results as a function of quark masses. Since
lattice computations are typically done with unphysical~i.e.,
energy and/or momentum nonconserving! kinematics, we
present our results for the most general kinematics possible,
in both the quenched and partially quenched cases. Second,
once the complete~leading-order! ChPT expressions forK
→0, K→p, andK→pp matrix elements are available, it is
possible to give a more detailed discussion of the systematic
error introduced by the ambiguity in the definition of
quenched penguin operators.

The paper is organized as follows. In Sec. II, we review
the main observation of Ref.@3#. We show how aLR pen-
guin, which transforms in an irreducible representation~ir-
rep! of SU(3)L3SU(3)R , splits into two operators in the
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~partially! quenched theory, with each of them transforming
in a different irrep of the~partially! quenched chiral symme-
try group. One of these irreps corresponds ‘‘naturally’’ to the
single irrep of the unquenched theory, while the other irrep
can be considered as ‘‘new,’’ and an artifact of quenching.
We give the ChPT realization of all relevant operators at
leading and next-to-leading chiral order, introducing new
low-energy constants~LECs! which appear in correspon-
dence to the new irrep. In Sec. III, we present our results for
K0→p1p2 penguin matrix elements to leading order in
ChPT, with general kinematics, and specialize these results
to physical~i.e., energy-momentum conserving! kinematics.
In Sec. IV, we discuss different strategies available for using
quenched lattice results to estimate real-worldK→pp ma-
trix elements and give some numerical examples. We provide
a simple prescription for determining the leading-order LEC
representing the new irrep in Sec. V, and Sec. VI contains
our conclusions. Some of this work has already been pre-
sented in Ref.@5#.

II. REVIEW OF LR PENGUINS IN „PARTIALLY …

QUENCHED QCD AND CHPT

A Lagrangian definition for partially quenched QCD can
be constructed as explained in Ref.@6# ~see also Ref.@7# for
an alternative realization using the replica method!. In addi-
tion to the valence quarksqv i , i 5u,d,s, with massesmv i ,
one introduces a separate set of sea quarksqsi , i
51, . . . ,N, with massesmsi , and a set of ‘‘ghost’’ quarks
qgi , i 5u,d,s, with masses equal to those of the valence
quarksmgi5mv i @8#. Ghost quarks are given bosonic statis-
tics, such that the ghost-quark determinant cancels the
valence-quark determinant, thus leaving only the sea-quark
determinant present in the path integral. Therefore, only sea
quarks propagate in internal loops.

Since partially quenched QCD thus contains more flavors
than unquenched QCD, its flavor symmetry group is larger
than the QCD one. The full chiral symmetry group relevant
for light meson physics is the graded extension of the ordi-
nary chiral groupSU(31Nu3)L3SU(31Nu3)R @6#. It is
graded because some of its elements transform fermions into
bosons and vice versa. The quenched theory, which has no
sea quarks at all, corresponds to the special caseN50 @9#.

We considerLR penguin operators of the form

Qpenguin5~ s̄d!L~ ūu1d̄d1 s̄s!R , ~2.1!

where

~ q̄1q2!L,R5q̄1gmPL,Rq2 ,

PL,R5
1

2
~17g5!, ~2.2!

and color contractions are not specified, so thatQpenguincan
represent bothQ5 andQ6. As already pointed out in Ref.@3#,

theu, d, ands fields in Eq.~2.1! represent valence quarks in
the partially quenched theory, and the penguin operator can
be decomposed as1

Qpenguin5
3

N
str~Lcc̄gmPL!str~cc̄gmPR!

1str~Lcc̄gmPL!str~Acc̄gmPR!

[
3

N
Qpenguin

PQS 1Qpenguin
PQA , ~2.3!

A5diagS 12
3

N
,12

3

N
,12

3

N
,2

3

N
, . . . ,2

3

ND ,

L i j 5d isd jd , ~2.4!

where the first three~valence! entries ofA are equal to 1
23/N, and the nextN13 ~sea and ghost! entries are equal to
23/N. Here c collects all quark fields in the theory,c
5(qv i ,qsi ,qgi). The tensorL projects onto the valence
( s̄d)L term in the first factor ofQpenguin. The motivation for

splitting Qpenguinthis way is thatQpenguin
PQS andQpenguin

PQA form
different representations of the partially quenched symmetry
group:Qpenguin

PQS (Qpenguin
PQA ) transforms in the trivial~adjoint!

irrep of SU(31Nu3)R . As a consequence, there are at least
two different ways of embedding the QCD penguin operator
into the partially quenched theory. One is to choose the par-
tially quenched penguin to be a singlet underSU(3
1Nu3)R , i.e., Qpenguin

PQS , as in the unquenched theory,
whereas the other choice is to use the original operator,
which is seen to be a linear combination of two irreducible
operators. This latter choice was made in Refs.@1,2#. In Ref.
@10# nonsinglet penguin operators such asQpenguin

PQA were not

considered, because singlet factors such as (ūu1d̄d1 s̄s)R
in Eq. ~2.1! had been implicitly extended to singlets under
the full ~partially! quenched symmetry group. Therefore, the
analysis of Ref.@10# was not complete, and Ref.@3# and this
paper remedy this forLR penguins.

To leading order~LO!, the operatorsQpenguin
PQS , Qpenguin

PQA

are represented in ChPT by@3#

Qpenguin
PQS →2a1

(8,1)str~LLmLm!1a2
(8,1)str~LX1!,

~2.5!

Qpenguin
PQA → f 2a (8,8)str~LSAS†!, ~2.6!

where

Lm5 iS]mS†, X652B0~SM†6MS†!, ~2.7!

with M the quark mass matrix,B0 the parameterB0 of Ref.
@11#, S5exp(2iF/ f ) the unitary field describing the par-
tially quenched Goldstone-meson multiplet, andf the bare
pion decay constant normalized such thatf p5132 MeV.

1In a theory withK valence quarks, all ratios 3/N get replaced by
K/N.
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The a ’s are the corresponding LECs. Notice thatQpenguin
PQA ,

unlike Qpenguin
PQS , is of orderp0, due to the fact that the right-

handed current inQpenguin
PQA is not a partially quenched singlet

~cf. electromagnetic penguins2!. As already observed in Ref.
@3#, the new operatorQpenguin

PQA does not contribute at the tree
level to matrix elements with only valence quarks on exter-
nal lines, since the matrixA is effectively proportional to the
unit matrix in the valence sector. Indeed, replacingA by the
unit matrix in Eq.~2.6! would make the operator vanish. This
is no longer true at next-to-leading order~NLO!, i.e., at order
p2, where one-loop contributions fromQpenguin

PQA to valence-
quark matrix elements are nonzero.

Since the singlet-operator contributions also start at order
p2, the NLO contributions fromQpenguin

PQA compete with the
LO contributions fromQpenguin

PQS , and thus need to be taken
into account already in a leading-order analysis ofK→0,
K→p, andK→pp matrix elements. This also implies that a
renormalization scale dependence already appears at leading
order for those partially quenched matrix elements. That
scale dependence is absorbed by newO(p2) counterterms
for Qpenguin

PQA . The complete list ofCPS-even@4# operators is

Q1
PQA5

b1
(8,8)

~4p!2
str~L$SAS†,LmLm%!,

Q2
PQA5

b2
(8,8)

~4p!2
str~LLmSAS†Lm!,

Q3
PQA5

b3
(8,8)

~4p!2
str~L$SAS†,X1%!,

Q4
PQA5

b4
(8,8)

~4p!2
str~L@SAS†,X2# !,

Q5
PQA5

b5
(8,8)

~4p!2
str~LSAS†!str~LmLm!,

Q6
PQA5

b6
(8,8)

~4p!2
str~LSAS†!str~X1!,

Q7
PQA5

b7
(8,8)

~4p!2
i ]mstr~L@SAS†,Lm#!, ~2.8!

where we introduced theO(p2) LECs b1, . . . ,7
(8,8) .

The partially quenched theory withN53 light sea quarks
represents a special case. ForN53, the LECs of the partially
quenched theory must be the same as those of the physical,
unquenched theory@12#, basically because they represent the
coefficients in an expansion in powers of quark masses and
thus depend only on the number of dynamical~sea! quarks,

and not on the quark masses themselves. Therefore, in the
N53 partially quenched theory, what one should do is to
omit Qpenguin

PQA altogether, because the aim is to obtain the
values ofa1,2

(8,1) , and not the (8,8) LECsa (8,8) andb i
(8,8) .3

The quenched case,N50, is different. In this case, the
decomposition reads

Qpenguin
QCD 5

1

2
str~Lcc̄gmPL!str~cc̄gmPR!

1str~Lcc̄gmPL!str~N̂cc̄gmPR!

[
1

2
Qpenguin

QS 1Qpenguin
QNS , ~2.9!

N̂5
1

2
diag~1,1,1,21,21,21!, ~2.10!

where valence entries ofN̂ are equal to1
2 , and ghost entries

are equal to2 1
2 . The first operator in the decomposition is a

singlet underSU(3u3)R , while the second is not~NS for

nonsinglet!. However,Qpenguin
QNS can transform into the singlet

operator, implying that the nonsinglet operators do not form
a representation by themselves. In other words,Qpenguin

QNS can

mix into Qpenguin
QS , which is possible becauseN̂ is not super-

traceless, unlikeA in the partially quenched case. The ChPT
realization of both operators is obtained from the expressions
given in Eqs.~2.6!, ~2.8! and by replacingA→N̂. When
referring to the quenched theory, we will add a subscriptq to
the LECs, and rename4 the LECs for Qpenguin

QNS as a (8,8)

→aq
NS, b i

(8,8)→bqi
NS.

Within the fully quenched approximation, as also in the
partially quenched case withNÞ3, there is no reason that
the LECs should have the same values as those of the un-
quenched theory. In general, the nonanalytic terms are modi-
fied by quenching, and even the scale dependence of LECs is
different between the quenched and unquenched theories. It
is thus nota priori clear what choice to make for the embed-
ding of penguin operators into the quenched theory. We will
return to this issue in Sec. IV below.

III. NONSINGLET K0\p¿pÀ MATRIX ELEMENTS
WITH GENERAL KINEMATICS

In this section we present the partially quenched and
quenched results for the contribution of strong penguin op-
erators to theK0→p1p2 matrix element to orderp2 in
ChPT. We will restrict ourselves to the isospin limit in the
valence sector,mvu5mvd , not assuming momentum conser-
vation, so thatqÞp11p2, with q the ~ingoing! K0 momen-
tum andp1 (p2) the ~outgoing! p1 (p2) momentum. All
momenta are on shell and we work in Euclidean space, i.e.,

2In fact, Qpenguin
PQA is a component of the same irrep as the electro-

magnetic penguin, except forN50 @3#.

3As long as one does not consider electro-magnetic penguin con-
tributions.

4In the quenched theory there is no relation betweenQpenguin
QNS and

the electromagnetic penguins@3#.
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p1
25p2

252Mp
2 , q252MK

2 . M j v i (M jsi) is the mass of a
meson made out of thej th valence quark and thei th valence
~sea! quark. In all results presented below, we have symme-
trized the expressions in the pion momentap1 andp2.

For the contribution of the singlet operator in Eq.~2.5! a
simple tree-level calculation yields the orderp2 result

^p1p2uQPQSuK0&

52
4i

f 3 H a1
(8,1)S 1

2
q~p11p2!1p1p2D1

2

3
a2

(8,1)

3~MK
2 2Mp

2 !S 11
1

2

2p1p21q~p11p2!22Mp
2

~q2p12p2!21MK
2 2 i e

D J .

~3.1!

Note that the contribution proportional toa2
(8,1) vanishes for

energy-conserving kinematics, because the corresponding
operator can be written as a total derivative by using equa-
tions of motion@4#.5 We put in ani e prescription in the last
term of Eq.~3.1! because it is needed in the limitMK→Mp ,
after continuing the external momenta from Euclidean to
Minkowski space by settingq252MK

2 , etc.6

As mentioned before, the tree-level contribution from the
new nonsinglet operator in Eq.~2.6! vanishes. At one loop, it
contributes at orderp2. For general kinematics, we obtain, in
the isospin limit,

^p1p2uQPQAuK0&1 loop5
1

2
@A~q;p1 ,p2!1A~q;p2 ,p1!#,

A~q;p1 ,p2!5
4i

3 f 3
a (8,8)(

isea
H 3~p1p22Mp

2 !I @M2si
2 ,M2si

2 ,~p11p2!2#1
2MK

2 2Mp
2 1qp1

~q2p1!2
@L~M2si

2 !2L~M3si
2 !#

26
~qp11MK

2 !~qp11Mp
2 !

~q2p1!2
I @M2si

2 ,M3si
2 ,~q2p1!2#1

~2p1p222qp114qp222Mp
2 !

~q2p12p2!21MK
2 2 i e

@L~M3si
2 !2L~M2si

2 !#J
2 (

ighost
~M jsi→M j v i , j 52,3!, ~3.2!

where we used thatM3si
2 2M1si

2 5MK
2 2Mp

2 at this order, and

L~M2!5E dD,

~2p!D

1

,21M2
,

I ~M1
2 ,M2

2 ,p2!52E dD,

~2p!D

1

~,21M1
2!@~,2p!21M2

2#
,

~3.3!

whereD is the number of space-time dimensions. Explicit
expressions for these integrals are given in the Appendix.
The one-loop diagrams contributing to this result are dis-
played in Fig. 1. In particular, the vacuum-tadpole diagram
~last diagram in Fig. 1! gives a nonzero contribution for gen-
eral kinematics which corresponds to the next-to-last line of
Eq. ~3.2!. In order to obtain the fully quenched result with no

sea quarks at all, one simply drops the sum over sea quarks
in Eq. ~3.2!, keeping only the sum over ghost quarks, and
replacesa (8,8)→aq

NS. There are no contributions fromh8
double poles.

The newO(p2) counterterms in Eq.~2.8! give, again for
general kinematics,

^p1p2uQPQAuK0&ct

5S 12
3

ND 4i

~4p2! f 3 H ~2b1
(8,8)1b2

(8,8)!

3S 1

2
q~p11p2!1p1p2D2

4

3
b3

(8,8)~MK
2 2Mp

2 !

3S 11
1

2

2p1p21q~p11p2!22Mp
2

~q2p12p2!21MK
2 2 i e

D J . ~3.4!

5Recent results for this matrix element for special unphysical ki-
nematics relevant for the extraction of LECs from the lattice can be
found in Ref.@13#.

6In particular,a2
(8,1) does not contribute in that limit, as already

observed in Ref.@14#. For a more detailed discussion, see Ref.@15#.

FIG. 1. One-loop diagrams with the insertion of the nonsinglet
operator at the weak vertex~box! contributing toK0→p1p2 with
general kinematics.
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The structure of these contributions is such that the scale
dependence contained in Eq.~3.2! can be fully compensated
by the LECsb i

(8,8) , i 51,2,3. It is easy to verify that the
other LECsb i

(8,8) , i 54, . . . ,7, do notcontribute. Since ex-
ternal legs contain only valence quarks, the tree-levelK
→pp matrix element does not involve the diagonalAii ele-
ments of the tensorA, with i referring to a sea or ghost quark.
This implies that, for this calculation, we may replaceA with
the unit matrix, and the operatorsQi

PQA in Eq. ~2.5! for i
54, . . . ,7vanish, while they become proportional to the op-
erators in Eq.~2.5! for i 51,2,3. It follows that the LECs
a1,2

(8,1) together withb1,2,3
(8,8) will always appear in the specific

combinations

3

N
a1

(8,1)2S 12
3

ND 1

~4p!2
~2b1

(8,8)1b2
(8,8)!,

3

N
a2

(8,1)1S 12
3

ND 2

~4p!2
b3

(8,8) ~3.5!

for all tree-level matrix elements with only valence quarks
on the external legs. For the analogue of Eq.~3.5! in the
quenched case, one replaces the factor 123/N by 1/2,
(3/N)a i

(8,1)→(1/2)aqi
(8,1) , a (8,8)→aq

NS, andb i
(8,8)→bqi

NS.
We conclude this section with the expressions for the

same matrix elements in the case of ‘‘physical’’ kinematics,
i.e., with the choiceq5p11p2. Settingq5p11p2 and us-
ing that q252MK

2 and p1
25p2

252Mp
2 , one obtains from

Eqs.~3.1!, ~3.2!, and~3.4!

^p1p2uQPQSuK0&phys5
4i

f 3
a1

(8,1)~MK
2 2Mp

2 !, ~3.6!

^p1p2uQPQAuK0&1 loop
phys

5
4i

3 f 3
a (8,8)(

isea
H 2

3

2
MK

2 I ~M2si
2 ,M2si

2 ,2MK
2 !

2S 3

2

MK
4

Mp
2

23MK
2 D I ~M2si

2 ,M3si
2 ,2Mp

2 !

2S 3

2

MK
2

Mp
2

23D @L~M2si
2 !2L~M3si

2 !#J
2 (

ighost
~M jsi→M j v i , j 52,3!, ~3.7!

^p1p2uQPQAuK0&ct
phys

5
24i

~4p2! f 3 S 12
3

ND ~2b1
(8,8)1b2

(8,8)!~MK
2 2Mp

2 !.

~3.8!

Dropping the sea-quark terms and carrying out the sum over
ghost quarks, we obtain a more explicit expression for the
one-loop contribution in the quenched case, in the modified
MS scheme~see Appendix!:

^p1p2uQQNSuK0&1 loop
phys 5

i

16p2f 3
aq

NSH 12~MK
2 2Mp

2 !log
Mp

2

L2
26

MK
2

Mp
2

(MK
2 2Mp

2 )1S MK
6

Mp
4

22
MK

4

Mp
2

12MK
2 D log

MK
2

Mp
2

1S MK
6

Mp
4

26
MK

4

Mp
2

110MK
2 24Mp

2 D log
2MK

2 2Mp
2

Mp
2

12MK
2 S F~Mp

2 ,Mp
2 ,2MK

2 !22ipu~MK
2 24Mp

2 !A12
4Mp

2

MK
2

1
p

3
A3D

1S MK
4

Mp
2

22MK
2 D @2F~Mp

2 ,MK
2 ,2Mp

2 !1F~MK
2 ,2MK

2 2Mp
2 ,2Mp

2 !#J , ~3.9!

where the functionF is given in the Appendix.

IV. STRATEGIES FOR QUENCHED ESTIMATES
OF REAL-WORLD PENGUIN MATRIX ELEMENTS

Recent numerical estimates ofK→pp matrix elements
reported in Refs.@1,2# have been obtained via theindirect
method, where the simplerK→p and K→0 transition am-
plitudes are computed on the lattice and then converted into
estimates forK→pp matrix elements using ChPT. How-

ever, the fact that those numerical results are still obtained in
the quenched approximation introduces a source of system-
atic error which is in principle uncontrolled. As already ex-
plained, the LECs of the quenched theory do not have to
have values equal to those of the unquenched theory. Typi-
cally, even the scale dependence of quenched and un-
quenched LECs is not the same; it depends on the number of
light dynamical~sea! quarks in the theory.
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In the case of penguin operators, an additional ambiguity
arises because it isa priori unclear whether it would be best
to take matrix elements ofQpenguin

QCD , i.e., a linear combina-
tion of Qpenguin

QS andQpenguin
QNS as in Eq.~2.9!, or to drop the

contribution fromQQNS under the assumption thataq1
(8,1) is

the best estimate ofa1
(8,1) .

In order to discuss possible strategies in more detail, we
first recall the leading-order ChPT expressions forK→p and
K→0 matrix elements of strong penguin operators, from
Ref. @3#. In the quenched approximation (N50) one has7

^p1uQpenguin
QCD uK1&5

4M2

f 2 H 1

2
~aq1

(8,1)2aq2
(8,1)!

2
1

~4p!2 S bq1
NS1

1

2
bq2

NS1bq3
NSD J ,

~4.1!

^0uQpenguin
QCD uK0&

5
4i

f H S 1

2
aq2

(8,1)1
1

~4p!2
bq3

NSD ~MK
2 2Mp

2 !

1aq
NS (

ivalence
@L~M3v i

2 !2L~M2v i
2 !#J , ~4.2!

where MK5Mp5M in the case of theK→p matrix ele-
ment, and contributions of both singlet and nonsinglet opera-
tors are included. Notice that only the~quenched versions of
the! combinations~3.5! of LECs appear in these expressions,
as expected. Assuming that one can limit the analysis to lead-
ing order in ChPT, there are at least three different strategies
for estimatingK→pp penguin matrix elements from LECs
obtained by fitting Eqs.~4.1!, ~4.2! to quenched numerical
results.

~1! Ignore aq
NS, but not the other LECs associated with

the nonsinglet operatorbq1,2,3
NS . Both bq3

NS and bq1
NS1 1

2 bq2
NS

are scale dependent@however, their sum is not, as can be
seen from Eq.~4.1!#, implying that this strategy is scale de-
pendent. However, it still makes sense in case the nonana-
lytic contribution proportional toaq

NS @cf. Eq. ~3.7!# is nu-
merically small compared to all other contributions at a
reasonable scaleL of order 1 GeV. Thus, the linear combi-
nation 1

2 aq1
(8,1)2@1/(4p)2#(bq1

NS1 1
2 bq2

NS) is taken as the best
estimate for the unquencheda1

(8,1) , and Eq.~3.6! can then be
used to obtain the physicalK→pp matrix element~at the
tree level!. This is the strategy followed in Refs.@1,2#. In
fact, in that work, it was assumed that the contribution pro-
portional toaq

NS in Eq. ~4.2! is small.

~2! Drop all the nonsinglet operators. It was shown in Ref.
@3# that this can be done by dropping, in the fully quenched
case, alleyediagrams in which the right-handed quarks in
Eq. ~2.1! are contracted. This can be easily deduced from Eq.
~2.9!. This strategy was explored forQ6 in Ref. @16#. ~For the
partially quenched case, see below.!

~3! Perform a complete quenched calculation including all
contributions from singlet and nonsinglet operators. After ex-
tracting all the LECs, singlet and nonsinglet, one can use the
sum of Eqs.~3.6!, ~3.9!, and the quenched version of Eq.
~3.8! to determine the quenchedK→pp matrix element at
the physical point.

Strategy 2 isolatesaq1
(8,1) , and might thus appear to be the

obvious choice, since it is this LEC that is needed for calcu-
lating theK→pp matrix element~to chiral leading order! in
the unquenched theory. However, as we already mentioned,
the values of LECs in the quenched and unquenched theories
do not have to be equal, and it might happen that~at some
scale L) the quenched combination12 aq1

(8,1)2@1/(4p)2#
3(bq1

NS1 1
2 bq2

NS), determined from strategy 1, is indeed a bet-
ter estimate ofa1

(8,1) . Strategy 2 can be viewed as the situ-
ation in which the strong interactions are quenched at all
scales between the weak and hadronic scales, because in that
case only singlet penguin operators would appear in the evo-
lution from the weak to the hadronic scale. So, while, on the
one hand, it appears natural to assume only a mild flavor
dependence of the LECs, in particulara1

(8,1) , one might, on
the other hand, argue that it is better to calculate the evolu-
tion from the weak to the hadronic scale in the unquenched
theory, even if the matrix element at the hadronic scale is
finally computed in the quenched approximation. The key
point is that it is impossible to decide which strategy is best.

The exception to these observations is the case of partially
quenched QCD in which the number of light sea quarks is
equal to that of the real world, in whichN53. In the par-
tially quenched theory, the singlet operator is@cf. Eq. ~2.3!#

Qpenguin
PQS 5

3

N
~ s̄d!LS ūvuv1d̄vdv1 s̄vsv

1(
i

q̄siqsi1ūgug1d̄gdg1 s̄gsgD
R

, ~4.3!

where the subscriptsv, s, and g denote valence, sea, and
ghost quarks, respectively. Strategy 2 now corresponds to
dropping all diagrams in which the right-handed valence and
ghost quarks in the second factor of Eq.~4.3! are contracted
@3#. If the number of sea quarksN53. ~but with the sea- and
valence-quark masses not necessarily equal!, the singlet
LECs a1,2

(8,1) are those of the real world@12#, and therefore
strategy 2 is the only correct one in this case.

For any other case, fully quenched or partially quenched
with NÞ3, there isa priori no preferred choice; the spread
in results obtained by employing all three strategies should
be taken as a~lower bound of the! systematic error due to
quenching. The extent to which strategies 1 and 3 lead to
numerically different results depends on the size ofaq

NS con-
tributions ~at a given scaleL). From Eqs.~3.6!, ~3.9! we

7We take the opportunity to correct the corresponding results of
Ref. @3#, where the factor 1/2 in front ofQpenguin

QS in Eq. ~2.9!, as
well as the factor 3/N in front of Qpenguin

PQS in Eq. ~2.3!, were not
taken into account consistently.
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find, taking physical values for all parameters,MK
5500 MeV, Mp5140 MeV, f 5 f p5132 MeV, M r

5770 MeV, andMh5550 MeV, that

2 i @K0→p1p2#q

5400.7S 1

2
aq1

(8,1)2aq
(27,1)D1~212.727.2i !aq

NS

~L51 GeV!

5400.7S 1

2
aq1

(8,1)2aq
(27,1)D1~28.727.2i !aq

NS

~L5M r!

5400.7S 1

2
aq1

(8,1)2aq
(27,1)D1~23.627.2i !aq

NS

~L5Mh!, ~4.4!

where we added in the tree-level ChPT contribution from the
SU(3)L 27-plet operator@4#. If aq

NS is of the same order as
1
2 aq1

(8,1)2aq
(27,1), the contribution of the terms proportional to

aq
NS is indeed small. The smallness of the coefficient ofaq

NS

is due to a 1/(4p)2 suppression factor coming from the loop
integral, and one might argue thataq

NS/(4p)2 is the ‘‘natu-
ral’’ parameter to compare with12 aq1

(8,1)2aq
(27,1), in which

case the contribution would not be small. Notice also that a
small spurious imaginary part is generated by the nonsinglet
operator via the ghost-pion one-loop rescattering diagram. It
is clear that the value ofaq

NS will have to be determined from
a lattice computation. While this can be done by including
theaq

NS terms, of, e.g., Eq.~4.2!, in a fit to lattice data, there
exists a much simpler and more reliable way of estimating
the size ofaq

NS, as will be explained in the next section.
Under the assumption thataq

NS can be neglected without
introducing a large uncertainty into the final estimate of
strong penguinK→pp matrix elements, the question re-
mains whether~to leading order in ChPT! 1

2 aq1
(8,1) or 1

2 aq1
(8,1)

2@1/(4p)2#(bq1
NS1 1

2 bq2
NS) would be a better estimate of

a1
(8,1) . The issue was investigated in Ref.@16#, where it was

found that the difference between the two choices is numeri-
cally significant. At the physical kaon mass, the numerical
value of theB parameter corresponding toQ6 turns out to be
approximately twice as large when the contribution of the
nonsinglet operatorQpenguin

QNS is omitted altogether. Translated
into estimates for the leading-order LECs, this implies that
1
2 aq1

(8,1) is approximately twice as large as1
2 aq1

(8,1)

2@1/(4p)2#(bq1
NS1 1

2 bq2
NS). This may lead to substantial

modifications in quenched estimates of«8/«, as discussed in
Ref. @5#.

We emphasize that the whole discussion here is based on
leading-order ChPT, and that NLO contributions may still
lead to a substantial correction. However, it is reasonable to
believe that NLO effects will not invalidate the basic content
of our observations.

Finally, we give a few more numerical examples of the
partially quenched case withN52, always keeping the

valence-quark masses at their physical values~in the isospin
limit !, and choosing the two sea quarks to be degenerate in
mass. Takingmsea5mu5md , we find8

2 i @K0→p1p2#N52

5400.7S 3

2
a1

(8,1)2a (27,1)D20.9a (8,8) ~L51 GeV!

5400.7S 3

2
a1

(8,1)2a (27,1)D10.4a (8,8) ~L5M r!

5400.7S 3

2
a1

(8,1)2a (27,1)D12.1a (8,8) ~L5Mh!,

~4.5!

whereas takingmsea5ms we obtain

2 i @K0→p1p2#N52

5400.7S 3

2
a1

(8,1)2a (27,1)D1~210.827.2i !a (8,8)

~L51 GeV!

5400.7S 3

2
a1

(8,1)2a (27,1)D1~29.527.2i !a (8,8)

~L5M r!

5400.7S 3

2
a1

(8,1)2a (27,1)D1~27.827.2i !a (8,8)

~L5Mh!. ~4.6!

Recall that for theN52 theory the values of the LECs do
not have to equal those of theN53 theory. However, the
partially quenched theory with two light sea quarks is closer
to the real-world theory than the quenched (N50) theory.
This is reflected by the fact that the coefficients ofa (8,8) are
small compared to those ofaq

NS in Eq. ~4.4!. Notice in addi-
tion that in theN52 case, withmsea5mu5md , the small
spurious imaginary part vanishes, since it comes entirely
from the pion-rescattering loop diagram where the sea-quark
contribution is now fully cancelled by the corresponding
ghost-quark contribution.

In the case ofN53 sea quarks with masses equal to the
three valence quarks, ghost- and sea-quark contributions in
Eqs.~3.2!, ~3.4! cancel,9 as they should, because this choice
of parameters corresponds precisely to unquenched QCD.

8The factor 3/2 comes from the factor 3/N in Eq. ~2.3!.
9In Eq. ~3.4! the cancelation already occurs by just settingN

53, because in this tree-level expression the sea- and ghost-quark
masses do not appear.
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V. HOW TO DETERMINE aQ
NS ON THE LATTICE

In principle, it is possible to determineaq
NS from matrix

elements with only physical~valence! particles as external
states. For instance, given good enough statistics and a wide
enough range of quark masses, it can be determined from a
fit to Eq. ~4.2!. However, as also pointed out in Ref.@2#, the
logarithmic terms in Eq.~4.2! can look very linear in the
typical range of quark masses used in lattice computations,
making it hard to disentangle aq

NS from aq2
(8,1)

1@1/(4p)2#bq3
(8,1) . It would therefore be preferable to deter-

mine aq
NS from a matrix element to which it contributes at

orderp0, because no other operators can ‘‘contaminate’’ the
result at that order.

It is very simple to do so, by considering matrix elements
with ghost quarks on the external lines instead of valence
quarks. Since this corresponds to a flavor rotation on the
external lines, one needs to rotate the operatorQpenguin

QNS ac-
cordingly. A key point is that, while of course ghost quarks
are not explicitly present in a quenched computation, their
propagators are identical to those of the valence quarks,
which are available in the actual computation.

So, in order to determineaq
NS, we propose to consider the

following matrix element. First, we rotateQpenguin
QNS by an

SU(3u3)L rotation into

Q̃penguin
QNS 5~ s̄gmPLd̃!str~N̂cc̄gmPR!. ~5.1!

This operator is in the same irrep of the groupSU(3u3)L
3SU(3u3)R and is thus parametrized by the same LECs as

Qpenguin
QNS , and in particular, to leading order, byaq

NS. We
then consider the matrix element of this operator between a
fermionickaon K̃} d̄̃g5s and the vacuum. To leading order,

^0uQ̃penguin
QNS uK&52i f aq

NS1O~p2!, ~5.2!

thus isolatingaq
NS. Carrying out all quark Wick contractions,

one finds that

^0uQ̃penguin
QNS ~y! d̄̃~x!g5s~x!u0&

52
1

2
$tr@g5^s~x!s̄~y!&gmPL^d̃~y! d̄̃~x!&#

3tr@gmPR@^u~y!ū~y!&1^d~y!d̄~y!&1^s~y!s̄~y!&

1^ũ~y! ū̃~y!&1^d̃~y! d̄̃~y!&1^s̃~y! s̄̃~y!&##

2tr@g5^s~x!s̄~y!&gmPR^s~y!s̄~y!&gmPL^d̃~y! d̄̃~x!&#

1tr@g5^s~x!s̄~y!&gmPL^d̃~y! d̄̃~y!&

3gmPR^d̃~y! d̄̃~x!&#%, ~5.3!

where the traces are over spin and color indices only. A key
observation is now that ghost propagators and valence propa-

gators are equal flavor by flavor,^d̃(y) d̄̃(x)&5^d(y)d̄(x)&,
etc. Using this property, Eq.~5.3! simplifies to

^0uQ̃penguin
QNS ~y! d̄̃~x!g5s~x!u0&52tr@g5^s~x!s̄~y!&gmPL^d~y!d̄~x!&#tr@gmPR@^u~y!ū~y!&1^d~y!d̄~y!&1^s~y!s̄~y!&##

1
1

2
tr@g5^s~x!s̄~y!&gmPR^s~y!s̄~y!&gmPL^d~y!d̄~x!&#

2
1

2
tr@g5^s~x!s̄~y!&gmPL^d~y!d̄~y!&gmPR^d~y!d̄~x!&#. ~5.4!

We conclude that it is possible to estimateaq
NS as a leading-

order effect using only combinations of contractions of
valence-quark propagators. For theK→0 matrix element of
Qpenguin

QNS @cf. Eqs. ~2.9!, ~4.2!#, the contractions in terms of
valence quarks are of the same form, but the first two terms
have the opposite sign, while the last term has the same sign
as in Eq.~5.4!. Since theK→0 matrix element is of order
p2, we may combine the two results to obtain

2tr@g5^s~x!s̄~y!&gmPL^d~y!d̄~y!&

3gmPR^d~y!d̄~x!&#amputated

5AZ~^0uQ̃penguin
QNS uK̃&1^0uQpenguin

QNS uK&

5AZ~2i f aq
NS1O~p2!!, ~5.5!

making it even easier to determineaq
NS. The wave-function

renormalizationZ is defined byd̄g5s5AZK.

The analysis for a similar determination ofa (8,8) in the
partially quenched theory is analogous. There, of course, the
observation is not new, sincea (8,8) is also the leading LEC
for the electromagnetic penguin@which in the partially
quenched theory withN>1 is in the same irrep asQpenguin

PQA

of Eq. ~2.6! @3##. The main differences between a determina-
tion of a (8,8) andaq

NS are that, first,aq
NS is not related to the

electromagnetic penguin in the quenched case@3#, and sec-
ond, that in order to determine it using leading-order@in this
caseO(p0)] ChPT, one is forced to consider ghost quarks, as
we did above.
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VI. CONCLUSION

In this paper, we continued our investigation of the ambi-
guities afflicting strong penguin contributions toK→pp
weak matrix elements due to the use of the quenched ap-
proximation.

The fact that the way ofembeddingpenguin operators of
the effective weak Hamiltonian in the quenched theory is not
unique tells us that, in the enlarged context of electroweak
interactions, the usual definition of the quenched theory is
not complete. If only strong interactions are considered, it is
sufficient to define quenched QCD as the modified version of
QCD in which the quark determinant is set equal to a con-
stant. A field-theoretic definition can be given through the
introduction of ghost quarks into the path integral@8#, giving
access to a complete picture of the symmetries of the
quenched theory@9#. As soon as one considers operators ex-
ternal to QCD~i.e., the addition of electroweak interactions!,
one has to answer the question how these operators should
be incorporated into the quenched theory. Usually, this is
straightforward. One classifies the operator by its flavor
quantum numbers, in other words, one determines the irrep
of SU(3)L3SU(3)R under which this operator transforms.
If there exists a larger irrep of the quenched symmetry group
which reduces to the unquenched irrep, the corresponding
component of the quenched irrep can be taken as the
quenched definition of the operator. However, in the case of
strong penguins the operator, while irreducible in the un-
quenched theory, is a linear combination of components of
more than oneirrep of the quenched symmetry group. There-
fore each LEC of the unquenched theory corresponds to a set
of LECs in the quenched theory. The ambiguity arises be-
cause there isa priori no criterion for which linear combi-
nation of quenched LECs~if any! would yield the best esti-
mate of the unquenched LEC. In the case ofLR penguins
considered here and in Ref.@3#, this phenomenon produces
an effect already at leading order in ChPT.

We remark that even in the simplest case when there ex-
ists a one-to-one correspondence between unquenched and
quenched irreps, there is still the freedom to choose any
component of the quenched irrep, and this flexibility can be
used to extract LECs in the most convenient way@17#. How-
ever, in this case there is no ambiguity in the relation be-
tween unquenched and quenched LECs~even though their
values may differ!. This is in principle not different from the
situation within the unquenched theory, where in general any
component of an irrep can be used to extract the correspond-
ing LEC. A classic example for weak matrix elements is the
relation betweenBK and theK1→p1p0 decay rate@18#. ~At
nonleading order, it may not be possible to determine all
LECs describing an operator in ChPT from one process, of
course.!

The ambiguity affecting penguin operators is fundamen-
tal, since there exists no solid theoretical argument that can
be used to decide the issue. Therefore, we argue that one
should compare all choices that can be reasonably made, and
take the resulting spread of estimated values as a lower
bound on the systematic error due to quenching. It appears
that in the case of«8/« this systematic error is rather large

@5,16#. A leading-order analysis of currently available lattice
data@1,2,16# seems to indicate that quenched lattice compu-
tations cannot even confirm that this parameter is nonvanish-
ing in the standard model. It could also be that the large
numerical difference found between12 aq1

(8,1) and 1
2 aq1

(8,1)

2@1/(4p)2#(bq1
NS1 1

2 bq2
NS) would be explained by the fact

that higher orders in ChPT have not been taken into account,
but we consider this to be unlikely. While it is clear that
higher orders are numerically important, there appears to be
no reason to assume thatbq1

NS1 1
2 bq2

NS is small. It could also
be thataq

NS, which appears inK0→0, and needs to be sub-
tracted to obtain1

2 aq1
(8,1)2@1/(4p)2#(bq1

NS1 1
2 bq2

NS) from K1

→p1, is not small. This would affect the determination of
1
2 aq2

(8,1)1@1/(4p)2#bq3
NS and hence the size of the subtraction.

It is therefore important to obtain a reliable estimate ofaq
NS.

We suggested a simple method for extracting its value.
The above argument doesnot imply that lattice computa-

tions of «8/« are doomed to fail. On the contrary, quenched
estimates of«8/« with a particular choice for the strong pen-
guins demonstrate that this computation is feasible, thanks to
major advances in both theory and computational power.
However, what will be needed in order to eliminate system-
atic errors due to quenching is a partially quenched study
with N53 light sea quarks. This is the only approximation to
unquenched QCD which is reliable in that it can be extrapo-
lated systematically to the real world@12#. Currently existing
quenched results give us invaluable information on what is
needed to promote them to the requiredN53 world. For
partially quenched QCD withNÞ3, the situation is essen-
tially the same as for quenched QCD, modulo differences in
detail.

Summarizing, we presented the quenched and partially
quenched results for the nonsinglet contribution to theK0

→p1p2 matrix element. This made it possible to discuss in
detail various strategies one might follow to use quenched
computations in order to estimate the real-world value of this
amplitude. Sinceaq

NS contributes to this matrix element,
but not to theK1→p1 transition amplitude used in Ref.
@1,2#, this introduces an additional ambiguity already at lead-
ing chiral order. The importance of this ambiguity depends
on the size ofaq

NS and we have proposed a simple recipe for
its determination. Our expressions forK0→p1p2 with the
most general possible kinematics and the inclusion of the
nonsinglet contributions are appropriate for the analysis of
direct quenched computations of this matrix element at lead-
ing order in ChPT. Beyond leading order, new problems arise
@14,19#, which may invalidate current methods for thedirect
determination of K→pp amplitudes with DI 51/2 in
quenched and partially quenched QCD.
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APPENDIX

In this appendix we collect explicit expressions for the
basic loop integrals appearing in Eq.~3.2!, etc. Using dimen-
sional regularization, we have

L~M2!5E dD,

~2p!D

1

,21M2

5
M2

16p2 S F2
2

e
1g212 log 4pG1 log

M2

L2 D ,

~A1!

whereL is the running scale,e542D, and

ReI ~M1
2 ,M2

2 ,p2!

52ReE dD,

~2p!D

1

~,21M1
2!@~,2p!21M2

2#

5
1

16p2 H F2
2

e
1g212 log 4pG211 log

M2
2

L2

1
1

2 S 12
M1

2

p2
1

M2
2

p2 D log
M1

2

M2
2

1
1

2
F~M1

2 ,M2
2 ,p2!J ,

~A2!

in which

F~M1
2 ,M2

2 ,p2!

5AlS 1,
M1

2

p2
,
M2

2

p2 D
3 log

p21M1
21M2

21p2Al~1,M1
2/p2,M2

2/p2!

p21M1
21M2

22p2Al~1,M1
2/p2,M2

2/p2!
,

l~x,y,z!5~x2y1z!214xy. ~A3!

Renormalized~‘‘modified MS’’ ! expressions are obtained by
dropping the contact terms in square brackets.

For p2.0, the argument of the logarithm in Eq.~A3! is
positive, andI is real. Forp2<0, F is obtained by analytic
continuation.l(1,M1

2/p2,M2
2/p2) turns negative for2(M1

1M2)2,p2,2(M12M2)2, and we find thatI is still real
with F now given by

F~M1
2 ,M2

2 ,p2!52A2lS 1,
M1

2

p2
,
M2

2

p2 D
3arctan

2p2A2l~1,M1
2/p2,M2

2/p2!

p21M1
21M2

2
.

~A4!

At p252(M1
21M2

2) the argument of the arctangent has a
singularity, across which the branch of the arctangent has to
be chosen continuously:

arctan
2p2A2l~1,M1

2/p2,M2
2/p2!

p21M1
21M2

2

5Arctan
2p2A2l~1,M1

2/p2,M2
2/p2!

p21M1
21M2

2
1p,

p2,2~M1
21M2

2!, ~A5!

where Arctan denotes the principal value of the arctangent.
Again continuing analytically acrossp252(M11M2)2, F
is again given by Eq.~A3!, but I (M1

2 ,M2
2 ,p2) picks up an

imaginary part:

Im I ~M1
2 ,M2

2 ,p2!52
1

16p2
pAlS 1,

M1
2

p2
,
M2

2

p2 D .

~A6!
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