279 research outputs found

    The relationship of telomere length to baseline corticosterone levels in nestlings of an altricial passerine bird in natural populations

    Get PDF
    Indexación: Web of Science; Scopus.Background: Environmental stressors increase the secretion of glucocorticoids that in turn can shorten telomeres via oxidative damage. Modification of telomere length, as a result of adversity faced early in life, can modify an individual's phenotype. Studies in captivity have suggested a relationship between glucocorticoids and telomere length in developing individuals, however less is known about that relationship in natural populations. Methods: In order to evaluate the effect of early environmental stressors on telomere length in natural populations, we compared baseline corticosterone (CORT) levels and telomere length in nestlings of the same age. We collected blood samples for hormone assay and telomere determination from two geographically distinct populations of the Thorn-tailed Rayadito (Aphrastura spinicauda) that differed in brood size; nestlings body mass and primary productivity. Within each population we used path analysis to evaluate the relationship between brood size, body mass, baseline CORT and telomere length. Results: Within each distinct population, path coefficients showed a positive relationship between brood size and baseline CORT and a strong and negative correlation between baseline CORT and telomere length. In general, nestlings that presented higher baseline CORT levels tended to present shorter telomeres. When comparing populations it was the low latitude population that presented higher levels of baseline CORT and shorter telomere length. Conclusions: Taken together our results reveal the importance of the condition experienced early in life in affecting telomere length, and the relevance of integrative studies carried out in natural conditions.https://frontiersinzoology.biomedcentral.com/articles/10.1186/s12983-016-0133-

    MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR

    Get PDF
    The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR-induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability

    Comparison of K+K^+ and ee^- Quasielastic Scattering

    Get PDF
    We formulate K+K^+-nucleus quasielastic scattering in a manner which closely parallels standard treatments of ee^--nucleus quasielastic scattering. For K+K^+ scattering, new responses involving scalar contributions appear in addition to the Coulomb (or longitudinal) and transverse (e,e)(e,e') responses which are of vector character. We compute these responses using both nuclear matter and finite nucleus versions of the Relativistic Hartree Approximation to Quantum Hadrodynamics including RPA correlations. Overall agreement with measured (e,e)(e,e') responses and new K+K^+ quasielastic scattering data for 40^{40}Ca at |\qs|=500 MeV/c is good. Strong RPA quenching is essential for agreement with the Coulomb response. This quenching is notably less for the K+K^+ cross section even though the new scalar contributions are even more strongly quenched than the vector contributions. We show that this ``differential quenching'' alters sensitive cancellations in the expression for the K+K^+ cross section so that it is reduced much less than the individual responses. We emphasize the role of the purely relativistic distinction between vector and scalar contributions in obtaining an accurate and consistent description of the (e,e)(e,e') and K+K^+ data within the framework of our nuclear structure model.Comment: 26 pages, 5 uuencoded figures appended to end of this fil

    Cross helicity and turbulent magnetic diffusivity in the solar convection zone

    Full text link
    In a density-stratified turbulent medium the cross helicity is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations we find the cross helicity and the mean vertical magnetic field anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface exceeds the value of 1 Gauss km/s. Its sign is anti-correlated with that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.Comment: 9 pages, 2 figures, submitted to Solar Physic

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Progress in operational modeling in support of oil spill response

    Get PDF
    Following the 2010 Deepwater Horizon accident of a massive blow-out in the Gulf of Mexico, scientists from government, industry, and academia collaborated to advance oil spill modeling and share best practices in model algorithms, parameterizations, and application protocols. This synergy was greatly enhanced by research funded under the Gulf of Mexico Research Initiative (GoMRI), a 10-year enterprise that allowed unprecedented collection of observations and data products, novel experiments, and international collaborations that focused on the Gulf of Mexico, but resulted in the generation of scientific findings and tools of broader value. Operational oil spill modeling greatly benefited from research during the GoMRI decade. This paper provides a comprehensive synthesis of the related scientific advances, remaining challenges, and future outlook. Two main modeling components are discussed: Ocean circulation and oil spill models, to provide details on all attributes that contribute to the success and limitations of the integrated oil spill forecasts. These forecasts are discussed in tandem with uncertainty factors and methods to mitigate them. The paper focuses on operational aspects of oil spill modeling and forecasting, including examples of international operational center practices, observational needs, communication protocols, and promising new methodologies

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO 3 ) often accumulate in mangrove and seagrass sediments. As CaCO 3 production emits CO 2 , there is concern that this may partially offset the role of Blue Carbon ecosystems as CO 2 sinks through the burial of organic carbon (C org ). A global collection of data on inorganic carbon burial rates (C inorg , 12% of CaCO 3 mass) revealed global rates of 0.8 TgC inorg yr −1 and 15–62 TgC inorg yr −1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO 3 burial may correspond to an offset of 30% of the net CO 2 sequestration. However, a mass balance assessment highlights that the C inorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO 3 dissolution. Hence, CaCO 3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO 2 sinks. © 2019, The Author(s)

    15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection

    Get PDF
    Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
    corecore