1,679 research outputs found

    Modelling the engineering behaviour of fibrous peat formed due to rapid anthropogenic terrestrialization in Hangzhou, China

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Engineering Geology on 21/10/2016, available online: https://doi.org/10.1016/j.enggeo.2016.10.009 The accepted version of the publication may differ from the final published version.Peat is a very variable but normally weak material. While engineering failures involving peat are common, the full diversity of engineering behaviours exhibited by peat has not been well classified due to its large range of possible compositions. This paper presents the behaviour of a fibrous peat which is a fill (made ground) originating from the most recent dredging of the West Lake, a site of cultural and historic importance in China. Given its relatively unique mechanism of deposition, the distinctive characteristics of this peat are presented in comparison to other peats reported in the literature highlighting its unique engineering behaviour. A laboratory study carried out on the peat at Jiangyangfan Eco-park, located in Hangzhou, China identifies that it has its special aspects when compared to other peats. The shearing behaviour of peat can be described using the framework of critical state theory. The most prominent characteristic of the West Lake Peat is that its undrained stress path bends towards the left at the very beginning of shearing which indicates that plastic deformation occurs at very small stress ratios. A constitutive model based on critical state theory for predicting the undrained shear behaviour of this type of peat from low stress to critical state levels is presented. This model also includes several elements of peat behaviour previously reported and it may therefore be applied to a wider range of peat soils

    Estimation of Canadian manure and fertilizer nitrogen application rates for crops at the soil polygon level using the CANB v2.0 model

    Get PDF
    Non-Peer ReviewedIn response to national environmental and climate change modeling projects such as agri-environmental indicators, greenhouse gases, carbon sequestration and policy scenarios, fertilizer N and manure nitrogen N application rates were estimated for individual crops at the Soil Landscapes of Canada (SLC) polygon scale (1:1 million). This database provides an estimate of the actual amount of N applied per crop and per hectare, based on provincial fertilization recommendations, manure production levels of each type of livestock and reported amounts of fertilizer sold. The database is being incorporated into ongoing programs related to Kyoto accounting of greenhouse gas emissions, environmental performance and policy formulation at Agriculture and Agri-Food Canada. A standardized Canadian Agricultural Nitrogen Budget (CANB v2.0) model was developed to calculate the agri-environmental indicators Residual Soil Nitrogen (RSN) and Indicator of Risk of Water Contamination by Nitrogen (IROWC-N). CANB is a national-level model that operates on 3500 SLC polygons using generalized soil, landscape, climate, and Census of Agriculture socioeconomic data. It is designed to provide a regional update on the soil N balance for each of the census years of 1981, 1986, 1991, 1996, 2001 and into the future. The database and model have the capability to calculate a number of different components of the nutrient balance, including the inputs of fertilizer N, manure N, biological N and atmospheric N and N the removals of N in the harvested proportion of the crop and via nitrogenous gas emissions. This paper describes the procedures to estimate fertilizer N and manure N inputs for each crop within each polygon. It includes: (i) the compilation of soil-specific N application rates from provincial extension guidelines, (ii) the calculation of total manure N production from animal numbers and excretion rates, (iii) the calculation of available manure N after storage and handling losses, and (iv) the recommended and adjusted nitrogen application rates. Adjustments were made to account for the amount of inorganic N in the manure applied to the various crops. The adjusted nitrogen rate data was also reconciled with the provincial fertilizer sales data

    A lecture on the Calogero-Sutherland models

    Full text link
    In these lectures, I review some recent results on the Calogero-Sutherland model and the Haldane Shastry-chain. The list of topics I cover are the following: 1) The Calogero-Sutherland Hamiltonian and fractional statistics. The form factor of the density operator. 2) The Dunkl operators and their relations with monodromy matrices, Yangians and affine-Hecke algebras. 3) The Haldane-Shastry chain in connection with the Calogero-Sutherland Hamiltonian at a specific coupling constant.Comment: (2 references added, small modifications

    Using Remote Sensing and Spatial Information Technologies to Detect and Map Two Aquatic Macrophytes

    Get PDF
    This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River

    Impact of open de-ionized water thin film laminar immersion on the liquid immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate

    Get PDF
    Debris control and surface quality are potential major benefits of sample liquid immersion when laser micromachining; however, the use of an immersion technique potentially modifies the ablation mechanism when compared to an ambient air interaction. To investigate the machining characteristics, bisphenol A polycarbonate has been laser machined in air and under a controllable open liquid film. To provide quantitative analysis, ablation threshold, ablation rate and the attenuation coefficient of the immersing DI water fluid were measured. In ambient air the threshold fluence was measured to be 37 mJ.cm-2. Thin film immersion displayed two trends: threshold fluences of 58.6 mJcm-2 and 83.9 mJcm-2. The attenuation of DI water was found to be negligible; thus, the change in ablation rate resulted from increased confinement of the vapour plume by the liquid medium, generating higher Bremsstrahlung attenuation of the beam, lowering the laser etch rate. Simultaneously, splashing motivated by the confined ablation plume allowed release of plume pressure before plume etching commenced. This contributed to the loss of total etching efficiency. Two interaction scenarios were obsereved as a result of splashing: (i) intermediate threshold fluence, where splashing occured after every pulse in a mode that interrupted the flow entirely, leaving an ambient air interaction for the following pulse; (ii) high threshold fluence, where splashing occured for every pulse in a mode that allowed the flow to recommence over the image before the next pulse causing every pulse to experience Bremsstrahlung attenuation. Since attenuation of the immersion liquid was negligible, it is the action of the constrained ablation plume within a thin flowing immersion liquid, the resultant Bremsstrahlung attenuation and splashing events that are the critical mechanisms that modify the primary ablation characteristics

    Capture of CO2 from Coal-fired Power Plant with NaOH Solution in a Continuous Pilot-scale Bubble-column Scrubber

    Get PDF
    AbstractA continuous pilot-scale bubble-column scrubber with NaOH as the absorbent was used to explore the capture of CO2 gas from a coal-fired power plant. The experimental design was based on the results of previous study. The diameter of the column was 20cm and the height of the column was 2.4 m. According to the S/N ratio, parameters, including absorption rate (RA), absorption efficiency (E), overall mass-transfer coefficient (KGa) and ratio of the gas-liquid flow rate (R), were selected for Taguchi analysis to obtain optimum conditions. A total of eleven experiments were carried out to verify the optimum conditions here. The range of the gas-flow rate (Qg) and liquid-flow rate (QLT) conducted in this work were 48-192 L/min and 1.6-10 L/min, respectively. The input gas concentrations were 9-12.2%. Using a steady-state material balance with a two-film model, RA and KGa could be determined. The results showed that E, RA and KGa were in the range of 30-98%, 1.03x10-4-11.48x10-4mol/s-L and 0.018-0.058 1/s, respectively. The obtained scrubbing factors (φ) were 0.00285-0.146mol/mol-L, while R was in the range of 0.23-24.14. The dynamic behavior of the scrubber was also discussed in this study. The results could be used as a basis for commercial scale operation for the carbon capture at a power plant as well as microalgae cultivation

    Two consecutive dural arteriovenous fistulae in a child: a case report of successful treatment with gamma knife radiosurgery

    Get PDF
    Introduction The occurrence of dural arteriovenous fistulae in children is quite rare. Endovascular embolization is typically the first line treatment. In general, Gamma Knife radiosurgery is used as adjuvant treatment and seldom performed as the first line treatment in children. Discussion We report a case of a 27-month-old girl who presented with an initial dural arteriovenous fistula (AVF) located at anterior base of the left middle cranial fossa. She subsequently developed another dural AVF over the left transverse-sigmoid sinus region 2 years later. Conclusion Both fistulae were successfully obliterated with Gamma Knife radiosurgery

    Z0Z_0 Boson Decays to Bc()B^{(*)}_c Meson and Its Uncertainties

    Full text link
    The programming new e+ee^{+}e^- collider with high luminosity shall provide another useful platform to study the properties of the doubly heavy BcB_c meson in addition to the hadronic colliders as LHC and TEVATRON. Under the `New Trace Amplitude Approach', we calculate the production of the spin-singlet BcB_c and the spin-triplet BcB^*_c mesons through the Z0Z^0 boson decays, where uncertainties for the production are also discussed. Our results show Γ(1S0)=81.440.5+102.1\Gamma_{(^1S_0)}= 81.4^{+102.1}_{-40.5} KeV and Γ(3S1)=116.462.8+163.9\Gamma_{(^3S_1)}=116.4^{+163.9}_{-62.8} KeV, where the errors are caused by varying mbm_b and mcm_c within their reasonable regions.Comment: 11 pages, 5 figures, 2 tables. To be published in Eur.Phys.J.

    Ladder approximation to spin velocities in quantum wires

    Get PDF
    The spin sector of charge-spin separated single mode quantum wires is studied, accounting for realistic microscopic electron-electron interactions. We utilize the ladder approximation (LA) to the interaction vertex and exploit thermodynamic relations to obtain spin velocities. Down to not too small carrier densities our results compare well with existing quantum Monte-Carlo (QMC) data. Analyzing second order diagrams we identify logarithmically divergent contributions as crucial which the LA includes but which are missed, for example, by the self-consistent Hartree-Fock approximation. Contrary to other approximations the LA yields a non-trivial spin conductance. Its considerably smaller computational effort compared to numerically exact methods, such as the QMC method, enables us to study overall dependences on interaction parameters. We identify the short distance part of the interaction to govern spin sector properties.Comment: 6 pages, 6 figures, to appear in Physical Review

    The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    Get PDF
    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations
    corecore