8 research outputs found

    Increased Vascular Contractility And Oxidative Stress In β 2-adrenoceptor Knockout Mice: The Role Of Nadph Oxidase

    No full text
    Background/Aims: β 2-adrenoceptor (β 2-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal β 2-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional β 2- AR (β 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from β 2KO and wild-type mice (WT) were studied. β 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between β 2KO and WT mice. Basal NO availability was reduced in aortas from β 2KO mice. Incubation of β 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. β 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47 phox expression was enhanced in β 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of β 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of β 2-AR to the maintenance of the vascular physiology. © 2012 S. Karger AG, Basel.494342352Tanaka, Y., Horinouchi, T., Koike, K., New insights into β-adrenoceptors in smooth muscle: Distribution of receptor subtypes and molecular mechanisms triggering muscle relaxation (2005) Clinical and Experimental Pharmacology and Physiology, 32 (7), pp. 503-514Steinberg, S.F., Jaffe, E.A., Bilezikian, J.P., Endothelial cells contain adrenoceptors (1984) Naunyn-Schmiedebergs Arch Pharmacol, 325, pp. 310-313Molenaar, P., Malta, E., Jones, C.R., Buxton, B.F., Summers, R.J., Autoradiographic localization and function of adrenoceptors on the human internal mammary artery and saphenous vein (1988) Br J Pharmacol, 95, pp. 225-233Gray, D.W., Marshall, I., Novel signal transduction pathway mediating endothelium-dependent- adrenoceptor vasorelaxation in rat thoracic aorta (1992) Br J Pharmacol, 107, pp. 684-690Ferro, A., Coash, M., Yamamoto, T., Rob, J., Ji, Y., Queen, L., Nitric oxide-dependent β 2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt (2004) British Journal of Pharmacology, 143 (3), pp. 397-403. , DOI 10.1038/sj.bjp.0705933Graves, J., Poston, L., Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: A role for the endothelium and nitric oxide (1993) British Journal of Pharmacology, 108 (3), pp. 631-637Priest, R.M., Hucks, D., Ward, J.P.T., Noradrenaline, β-adrenoceptor mediated vasorelaxation and nitric oxide in large and small pulmonary arteries of the rat (1997) British Journal of Pharmacology, 122 (7), pp. 1375-1384Pourageaud, F., Leblais, V., Bellance, N., Marthan, R., Muller, B., Role of,2-adrenoceptors (AR), but not,1-,3-AR and endothelial nitric oxide, in AR-mediated relaxation of rat intrapulmonary artery (2005) Naunyn Schmiedebergs Arch Pharmacol, 372, pp. 14-23Akimoto, Y., Horinouchi, T., Shibano, M., Matsushita, M., Yamashita, Y., Okamoto, T., Yamaki, F., Koike, K., Nitric oxide (NO) primarily accounts for endothelium-dependent component of α-adrenoceptor-activated smooth muscle relaxation of mouse aorta in response to isoprenaline (2002) Journal of Smooth Muscle Research, 38 (4-5), pp. 87-99. , DOI 10.1540/jsmr.38.87Leblais, V., Delannoy, E., Fresquet, F., Begueret, H., Bellance, N., Banquet, S., Allieres, C., Muller, B., Adrenergic relaxation in pulmonary arteries: Preservation of the endothelial nitric oxide-dependent β 2 component in pulmonary hypertension (2008) Cardiovascular Research, 77 (1), pp. 202-210. , DOI 10.1093/cvr/cvm008Dawes, M., Chowienczyk, P.J., Ritter, J.M., Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by β-adrenergic agonists in human forearm (1997) Circulation, 95 (9), pp. 2293-2297Chruscinski, A., Brede, M.E., Meinel, L., Lohse, M.J., Kobilka, B.K., Hein, L., Differential distribution of β-adrenergic receptor subtypes in blood vessels of knockout mice lacking β 1- or β 2- adrenergic receptors (2001) Molecular Pharmacology, 60 (5), pp. 955-962Rascado, R.R., Bendhack, L.M., Activation of α 2-adrenoceptors is necessary to induce nitric oxide release in isoprenaline-induced relaxation (2005) Vascular Pharmacology, 42 (2), pp. 63-68. , DOI 10.1016/j.vph.2005.01.008Alexander, S.P.H., Mathie, A., Peters, J.A., Guide to Receptors and Channels (GRAC), 4th edition (2009) Br J Pharmacol, 158, pp. S1-S254Ferro, A., Queen, L.R., Priest, R.M., Xu, B., Ritter, J.M., Poston, L., Ward, J.P.T., Activation of nitric oxide synthase by β 2-adrenoceptors in human umbilical vein endothelium in vitro (1999) British Journal of Pharmacology, 126 (8), pp. 1872-1880. , DOI 10.1038/sj.bjp.0702512Queen, L.R., Ji, Y., Xu, B., Young, L., Yao, K., Wyatt, A.W., Rowlands, D.J., Ferro, A., Mechanisms underlying β 2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells (2006) Journal of Physiology, 576 (2), pp. 585-594. , DOI 10.1113/jphysiol.2006.115998Gillissen, A., Wickenburg, D., Van Zwoll, D., Schultze-Werninghaus, G., Beta-2-agonists have antioxidant function in vitro. 2. The effect of beta-2-agonists on oxidant-mediated cytotoxicity and on superoxide anion generated by human polymorphonuclear leukocytes (1997) Respiration, 64 (1), pp. 23-28Mirza, Z.N., Kato, M., Kimura, H., Tachibana, A., Fujiu, T., Suzuki, M., Mochizuki, H., Morikawa, A., Fenoterol inhibits superoxide anion generation by human polymorphonuclear leukocytes via β 2-adrenoceptor-dependent and -independent mechanisms (2002) Annals of Allergy, Asthma and Immunology, 88 (5), pp. 494-500Trombetta, I.C., Batalha, L.T., Rondon, M.U.P.B., Laterza, M.C., Frazzatto, E., Alves, M.J.N.N., Santos, A.C., Negrao, C.E., Gly 16 + Glu 27 β 2-adrenoceptor polymorphisms cause increased forearm blood flow responses to mental stress and handgrip in humans (2005) Journal of Applied Physiology, 98 (3), pp. 787-794. , DOI 10.1152/japplphysiol.00503.2004Garovic, V.D., Joyner, M.J., Dietz, N.M., Boerwinkle, E., Turner, S.T., 2-Adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans (2003) Journal of Physiology, 546 (2), pp. 583-589. , DOI 10.1113/jphysiol.2002.031138Chruscinski, A.J., Rohrer, D.K., Schauble, E., Desai, K.H., Bernstein, D., Kobilka, B.K., Targeted disruption of the 2-adrenergic receptor gene (1999) J Biol Chem, 274, pp. 16694-16700Rolim, N.P.L., Medeiros, A., Rosa, K.T., Mattos, K.C., Irigoyen, M.C., Krieger, E.M., Krieger, J.E., Brum, P.C., Exercise training improves the net balance of cardiac Ca 2+ handling protein expression in heart failure (2007) Physiological Genomics, 29 (3), pp. 246-252. , http://physiolgenomics.physiology.org/cgi/reprint/29/3/246, DOI 10.1152/physiolgenomics.00188.2006Rabelo, L.A., Cortes, S.F., Alvarez-Leite, J.I., Lemos, V.S., Endothelium dysfunction in LDL receptor knockout mice: A role for H 2O 2 (2003) British Journal of Pharmacology, 138 (7), pp. 1215-1220. , DOI 10.1038/sj.bjp.0705164Davel, A.P.C., Kawamoto, E.M., Scavone, C., Vassallo, D.V., Rossoni, L.V., Changes in vascular reactivity following administration of isoproterenol for 1 week: A role for endothelial modulation (2006) British Journal of Pharmacology, 148 (5), pp. 629-639. , DOI 10.1038/sj.bjp.0706749, PII 0706749Rossoni, L.V., Salaices, M., Marin, J., Vassallo, D.V., Alonso, M.J., Alterations in phenylephrine-induced contractions and the vascular expression of Na +,K +-ATPase in ouabain-induced hypertension (2002) British Journal of Pharmacology, 135 (3), pp. 771-781Davel, A.P., Fukuda, L.E., Sá, L.L., Munhoz, C.D., Scavone, C., Sanz-Rosa, D., Cachofeiro, V., Rossoni, L.V., Effects of isoproterenol treatment for 7 days on inflammatory mediators in the rat aorta (2008) Am J Physiol Heart Circ Physiol, 295, pp. 211-219Iaccarino, G., Ciccarelli, M., Sorriento, D., Galasso, G., Campanile, A., Santulli, G., Cipolletta, E., Trimarco, B., Ischemic neoangiogenesis enhanced by, 2-adrenergic receptor overexpression: A novel role for the endothelial adrenergic system (2005) Circ Res, 97, pp. 1182-1189Van Hove, C.E., Van Der Donckt, C., Herman, A.G., Bult, H., Fransen, P., Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells (2009) Br J Pharmacol, 158, pp. 920-930Isenovic, E., Walsh, M.F., Muniyappa, R., Bard, M., Diglio, C.A., Sowers, J.R., Phosphatidylinositol 3-kinase may mediate isoproterenol-induced vascular relaxation in part through nitric oxide production (2002) Metabolism: Clinical and Experimental, 51 (3), pp. 380-386. , DOI 10.1053/meta.2002.30525Rohrer, D.K., Chruscinski, A., Schauble, E.H., Bernstein, D., Kobilka, B.K., Cardiovascular and metabolic alterations in mice lacking both beta1-and beta2-adrenergic receptors (1999) J Biol Chem, 274, pp. 16701-16708Alvarez, Y., Briones, A.M., Hernanz, R., Perez-Giron, J.V., Alonso, M.J., Salaices, M., Role of NADPH oxidase and iNOS in vasoconstrictor responses of vessels from hypertensive and normotensive rats (2008) British Journal of Pharmacology, 153 (5), pp. 926-935. , DOI 10.1038/sj.bjp.0707575, PII 0707575Giachini, F.R., Sullivan, J.C., Lima, V.V., Carneiro, F.S., Fortes, Z.B., Pollock, D.M., Carvalho, M.H., Tostes, R.C., Extracellular signalregulated kinase 1/2 activation, via downregulation of mitogen-activated protein kinase phosphatase 1, mediates sex differences in desoxycorticosterone acetate-salt hypertension vascular reactivity (2010) Hypertension, 55, pp. 172-179Birukov, K.G., Cyclic stretch, reactive oxygen species, and vascular remodeling (2009) Antioxid Redox Signal., 11, pp. 1651-1667Duerrschmidt, N., Stielow, C., Muller, G., Pagano, P.J., Morawietz, H., NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells (2006) Journal of Physiology, 576 (2), pp. 557-567. , DOI 10.1113/jphysiol.2006.111070Selemidis, S., Dusting, G.J., Peshavariya, H., Kemp-Harper, B.K., Drummond, G.R., Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells (2007) Cardiovascular Research, 75 (2), pp. 349-358. , DOI 10.1016/j.cardiores.2007.03.030, PII S0008636307001873Lassegue, B., Griendling, K.K., NADPH oxidases: Functions and pathologies in the vasculature (2010) Arterioscler Thromb Vasc Biol, 30, pp. 653-661Ximenes, V.F., Kanegae, M.P.P., Rissato, S.R., Galhiane, M.S., The oxidation of apocynin catalyzed by myeloperoxidase: Proposal for NADPH oxidase inhibition (2007) Archives of Biochemistry and Biophysics, 457 (2), pp. 134-141. , DOI 10.1016/j.abb.2006.11.010, PII S0003986106004498Touyz, R.M., Apocynin, NADPH oxidase, and vascular cells: A complex matter (2008) Hypertension, 51 (2), pp. 172-174. , DOI 10.1161/HYPERTENSIONAHA.107.103200, PII 0000426820080200000003Burger, D., Montezano, A.C., Nishigaki, N., He, Y., Carter, A., Touyz, R.M., Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts (2011) Arterioscler Thromb Vasc Biol, 31, pp. 1898-1907Barbieri, S.S., Cavalca, V., Eligini, S., Brambilla, M., Caiani, A., Tremoli, E., Colli, S., Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms (2004) Free Radical Biology and Medicine, 37 (2), pp. 156-165. , DOI 10.1016/j.freeradbiomed.2004.04.020, PII S0891584904003417MacMillan-Crow, L.A., Cruthirds, D.L., Manganese superoxide dismutase in disease (2001) Free Radical Res, 34, pp. 325-336Takahata, Y., Takarada, T., Iemata, M., Yamamoto, T., Nakamura, Y., Kodama, A., Yoneda, Y., Functional expression of, 2-adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells (2009) J Cell Physiol, 218, pp. 268-275Xu, Q., Dalic, A., Fang, L., Kiriazis, H., Ritchie, R.H., Sim, K., Gao, X.M., Du, X.J., Myocardial oxidative stress contributes to transgenic 2-adrenoceptor activation-induced cardiomyopathy and heart failure (2011) Br J Pharmacol, 162, pp. 1012-102

    Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations

    Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth

    No full text
    Amazonian Dark Earths (ADE) are anthropic soils that are enriched in carbon (C) and several nutrients, particularly calcium (Ca) and phosphorus (P), when compared to adjacent soils from the Amazon basin. Studies on ADE empower the understanding of complex pre-Columbian cultural development in the Amazon and may also provide insights for future sustainable agricultural practices in the tropics. ADE are highly variable in size, depth and soil physico-chemical characteristics. Nonetheless, the differentiation between ADE and the adjacent soils is not standardized and is commonly done based on visual field observations. In this regard, the pretic horizon has been recently proposed as an attempt to classify ADE systematically. Spatial modelling techniques can be of great use to study the structure of the spatial variation of soil properties in highly variable areas. Here, we predicted the carbon and nutrients stocks in ADE by applying spatial modelling techniques using an environmental covariate (i.e. expected anthropic enrichment gradient) in our model. In addition, we used the pretic horizon criteria to classify pretic and non-pretic areas and evaluate their relative contribution to the total stocks. In this study, we collected soil samples from five 20-cm soil layers at n = 53 georeferenced points placed in a grid of about 10 to 60 m spacing in a study area located in Central Amazon (~9.4 ha). Ceramic fragments were weighed and quantified. Samples were analysed for: Total C, Total Ca, Total P, Exchangeable Ca + Mg, Extractable P, soil pH, potential CEC (pH = 7.0) and the clay content. The use of the pretic horizon criteria allowed us to clearly distinguish two unambiguous areas with a sharp transition, rather than a smooth continuum, in contrast to previous studies in ADE. Depth- and profile-wise linear regression model parameters indicated a greater importance of the chosen environmental covariate (i.e. expected anthropic enrichment gradient) to explain the spatial variation of Total Ca and Total P stocks than Total C stocks. The overall Total Ca and Total P stocks were twice as large in the pretic area when compared to the non-pretic area

    Distribuição do carbono orgânico em Latossolo sob manejoda adubação fosfatada em plantio direto no Cerrado

    Get PDF
    O objetivo deste trabalho foi avaliar a distribuição vertical e horizontal do carbono orgânico do solo (CO) sob cinco manejos da adubação fosfatada, no sistema plantio direto. O experimento foi instalado sob Latossolo Vermelho, cultivado durante oito anos com soja ou milho, com milheto como planta de cobertura na entressafra. As parcelas foram submetidas aos tratamentos: aplicação de superfosfato triplo a lanço e no sulco, fosfato natural reativo a lanço e no sulco, e ausência de adição de fertilizante fosfatado (testemunha). A adição anual dos adubos fosfatados, na dose de 80 kg ha-1 de P2O5, foi realizada em solo inicialmente com baixo teor de fósforo disponível. Amostras foram coletadas perpendicularmente à linha de plantio, em sete pontos distanciados a 12,5 cm, e cinco camadas: 0-2,5, 2,5-5,0, 5,0-10, 10-20 e 20-30 cm. O conteúdo e a distribuição do CO são afetados pela adubação fosfatada, tanto vertical quanto horizontalmente, com os maiores conteúdos observados nos tratamentos com adubos fosfatados. Em comparação com a testemunha, o superfosfato triplo apresentou maior conteúdo de CO até a camada de 5,0-10 cm, e o fosfato natural reativo até 10-20 cm. A aplicação de fósforo em sulcos proporciona maior volume de solo com teores adequados de CO, em comparação à aplicação a lanço
    corecore