242 research outputs found
MEASUREMENTS OF RADIATION INTENSITIES IN VERTICAL CONCRETE-LINED HOLES AND AN ADJOINING TUNNEL AT THE TOWER SHIELDING FACILITY
Fast neutron and gamma-dose rates within 4-ft-dia., 20-ft-deep, concrete- lined holes were measured at the Tower Shielding Facility. The radiation source was the Tower Shielding Reactor II (TSR-II) enclosed in a shield that modified the neutron to gamma ratio of the reactor leakage spectrum to more closely resemble that of a weapon spectrum. The holes were located at horizontal distances of 100, 228, and 450 ft from the reactor. From the hole at 100 ft extended a reinforced concrete-lined tunnel, 6 ft high, 21/2 ft wide, and 20 ft long, with its ceiling 10 ft below ground level. The experimental measurements consisted of vertical traverses in the three holes and horizontal traverses in the tunnel. The parameters varied included distance from the reactor, the angle of elevation of the reactor with respect to the horizontal at the hole, and the material and thickness of the shield over the hole. Reactor elevation angles ranged from 15 to 90 deg . The shields over the holes were concrete, iron, and laminated iron and concrete slabs. (auth
Field desorption ion source development for neutron generators
A new approach to deuterium ion sources for deuterium-tritium neutron
generators is being developed. The source is based upon the field desorption of
deuterium from the surfaces of metal tips. Field desorption studies of
microfabricated field emitter tip arrays have been conducted for the first
time. Maximum fields of 30 V/nm have been applied to the array tip surfaces to
date, although achieving fields of 20 V/nm to possibly 25 V/nm is more typical.
Both the desorption of atomic deuterium ions and the gas phase field ionization
of molecular deuterium has been observed at fields of roughly 20 V/nm and 20-30
V/nm, respectively, at room temperature. The desorption of common surface
adsorbates, such as hydrogen, carbon, water, and carbon monoxide is observed at
fields exceeding ~10 V/nm. In vacuo heating of the arrays to temperatures of
the order of 800 C can be effective in removing many of the surface
contaminants observed
Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition
The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5–10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72825/1/j.1462-2920.2007.01250.x.pd
Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm
A lot of research effort has been put into community detection from all
corners of academic interest such as physics, mathematics and computer science.
In this paper I have proposed a Bi-Objective Genetic Algorithm for community
detection which maximizes modularity and community score. Then the results
obtained for both benchmark and real life data sets are compared with other
algorithms using the modularity and MNI performance metrics. The results show
that the BOCD algorithm is capable of successfully detecting community
structure in both real life and synthetic datasets, as well as improving upon
the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text
overlap with arXiv:0906.061
Dioctahedral mixed K-Na-micas and paragonite in diagenetic to low-temperature metamorphic terrains: bulk rock chemical, thermodynamic and textural constraints
Abstract
Metamorphic mineral assemblages in low-temperature metaclastic rocks often contain paragonite and/or its precursor metastable phase (mixed K-Na-white mica). Relationships between the bulk rock major element chemistries and the formation of paragonite at seven localities from Central and SE-Europe were studied, comparing the bulk chemical characteristics with mineral assemblage, mineral chemical and metamorphic petrological data. Considerable overlaps between the projection fields of bulk chemistries of the Pg-free and Pg-bearing metaclastic rocks indicate significant differences between the actual (as analyzed) and effective bulk chemical compositions. Where inherited, clastic, inert phases/constituents were excluded, it was found that a decrease in Na/(Na+Al*) and in K/(K+Al*) ratios of rocks favors the formation and occurrence of Pg and its precursor phases (Al* denotes here the atomic quantity of aluminum in feldspars, white micas and “pure” hydrous or anhydrous aluminosilicates). In contrast to earlier suggestions, enrichment in Na and/or an increase in Na/K ratio by themselves do not lead to formation of paragonite. Bulk rock chemistries favorable to formation of paragonite and its precursor phases are characterized by enrichment in Al and depletion in Na, K, Ca (and also, Mg and Fe2+). Such bulk rock chemistries are characteristic of chemically “mature” (strongly weathered) source rocks of the pelites and may also be formed by synand post-sedimentary magmatism-related hydrothermal (leaching) activity. What part of the whole rock is active in determining the effective bulk chemistry was investigated by textural examination of diagenetic and anchizone-grade samples. It is hypothesized that although solid phases act as local sources and sinks, transport of elements such as Na through the grain boundaries have much larger communication distances. Sodium-rich white micas nucleate heterogeneously using existing phyllosilicates as templates and are distributed widely on the thin section scale. The results of modeling by THERMOCALC suggest that paragonite preferably forms at higher pressures in low-T metapelites. The stability fields of Pg-bearing assemblages increase, the Pg-in reaction line is shifted towards lower pressures, while the stability field of the Chl-Ms-Ab-Qtz assemblage decreases and is shifted towards higher temperatures with increasing Al* content and decreasing Na/(Na+Al*) and K/(K+Al*) ratios
A review of spatial causal inference methods for environmental and epidemiological applications
The scientific rigor and computational methods of causal inference have had
great impacts on many disciplines, but have only recently begun to take hold in
spatial applications. Spatial casual inference poses analytic challenges due to
complex correlation structures and interference between the treatment at one
location and the outcomes at others. In this paper, we review the current
literature on spatial causal inference and identify areas of future work. We
first discuss methods that exploit spatial structure to account for unmeasured
confounding variables. We then discuss causal analysis in the presence of
spatial interference including several common assumptions used to reduce the
complexity of the interference patterns under consideration. These methods are
extended to the spatiotemporal case where we compare and contrast the potential
outcomes framework with Granger causality, and to geostatistical analyses
involving spatial random fields of treatments and responses. The methods are
introduced in the context of observational environmental and epidemiological
studies, and are compared using both a simulation study and analysis of the
effect of ambient air pollution on COVID-19 mortality rate. Code to implement
many of the methods using the popular Bayesian software OpenBUGS is provided
Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia:a Multinational Point Prevalence Study of Hospitalised Patients
Pseudornonas aeruginosa is a challenging bacterium to treat due to its intrinsic resistance to the antibiotics used most frequently in patients with community-acquired pneumonia (CAP). Data about the global burden and risk factors associated with P. aeruginosa-CAP are limited. We assessed the multinational burden and specific risk factors associated with P. aeruginosa-CAP.
We enrolled 3193 patients in 54 countries with confirmed diagnosis of CAP who underwent microbiological testing at admission. Prevalence was calculated according to the identification of P. aeruginosa. Logistic regression analysis was used to identify risk factors for antibiotic-susceptible and antibiotic-resistant P. aeruginosa-CAP.
The prevalence of P. aeruginosa and antibiotic-resistant P. aeruginosa-CAP was 4.2% and 2.0%, respectively. The rate of P. aeruginosa CAP in patients with prior infection/colonisation due to P. aeruginosa and at least one of the three independently associated chronic lung diseases (i.e. tracheostomy, bronchiectasis and/or very severe chronic obstructive pulmonary disease) was 67%. In contrast, the rate of P. aeruginosa-CAP was 2% in patients without prior P. aeruginosa infection/colonisation and none of the selected chronic lung diseases. The multinational prevalence of P. aeruginosa-CAP is low.
The risk factors identified in this study may guide healthcare professionals in deciding empirical antibiotic coverage for CAP patients
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
- …