777 research outputs found

    Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    Get PDF
    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes

    Determinants of hospital length of stay after thoracoabdominal aortic aneurysm repair

    Get PDF
    AbstractPurpose: Extended hospital length of stay (LOS) and consequent high costs are associated with thoracic and thoracoabdominal aortic aneurysm (TAAA) surgery. In this study, we examined factors that may influence LOS after TAAA repair. Methods: Five hundred forty thoracic and TAAA repairs were performed by one surgeon between 1990 and 1999. The data were analyzed with multiple linear regression with appropriate logarithmic transformation. The predictor variables included patient demographics, disease extent, severity indicators, intraoperative factors, and postoperative complications. Results: The median LOS was 15 days. Postoperative creatinine level of greater than 2.9 was the most important predictor of LOS, followed by spinal cord deficit, age, and pulmonary complication (all statistically significant with P <.05). A second model constrained to preoperative risk factors showed both age and complete diaphragmatic division to be associated with increased LOS. Preservation of the diaphragm led to reduced LOS by an average of 4 days. The adjunct cerebrospinal fluid drainage and distal aortic perfusion was associated with a decrease in LOS, although it did not reach statistical significance. Conclusion: Renal failure, spinal cord deficit, and pulmonary complication were the major determinants of LOS in patients for TAAA repair. This study shows that the preservation of diaphragmatic function and the use of the adjunct distal aortic perfusion and cerebrospinal fluid drainage may reduce hospital LOS. (J Vasc Surg 2002;35:648-53.

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    Electron Dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+ÎŽ_{4+\delta}: Evidence for the Pseudogap State and Unconventional c-axis Response

    Full text link
    Infrared reflectance measurements were made with light polarized along the a- and c-axis of both superconducting and antiferromagnetic phases of electron doped Nd1.85_{1.85}Ce.15_{.15}CuO4+ÎŽ_{4+\delta}. The results are compared to characteristic features of the electromagnetic response in hole doped cuprates. Within the CuO2_2 planes the frequency dependent scattering rate, 1/τ(ω)\tau(\omega), is depressed below ∌\sim 650 cm−1^{-1}; this behavior is a hallmark of the pseudogap state. While in several hole doped compounds the energy scales associated with the pseudogap and superconducting states are quite close, we are able to show that in Nd1.85_{1.85}Ce.15_{.15}CuO4+ÎŽ_{4+\delta} the two scales differ by more than one order of magnitude. Another feature of the in-plane charge response is a peak in the real part of the conductivity, σ1(ω)\sigma_1(\omega), at 50-110 cm−1^{-1} which is in sharp contrast with the Drude-like response where σ1(ω)\sigma_1(\omega) is centered at ω=0\omega=0. This latter effect is similar to what is found in disordered hole doped cuprates and is discussed in the context of carrier localization. Examination of the c-axis conductivity gives evidence for an anomalously broad frequency range from which the interlayer superfluid is accumulated. Compelling evidence for the pseudogap state as well as other characteristics of the charge dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+ÎŽ_{4+\delta} signal global similarities of the cuprate phase diagram with respect to electron and hole doping.Comment: Submitted to PR

    Personal identity (de)formation among lifestyle travellers: A double-edged sword?

    Get PDF
    This article explores the personal identity work of lifestyle travellers – individuals for whom extended leisure travel is a preferred lifestyle that they return to repeatedly. Qualitative findings from in-depth semi-structured interviews with lifestyle travellers in northern India and southern Thailand are interpreted in light of theories on identity formation in late modernity that position identity as problematic. It is suggested that extended leisure travel can provide exposure to varied cultural praxes that may contribute to a sense of social saturation. Whilst a minority of the respondents embraced a saturation of personal identity in the subjective formation of a cosmopolitan cultural identity, several of the respondents were paradoxically left with more identity questions than answers as the result of their travels

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Pseudogap formation of four-layer BaRuO3_3 and its electrodynamic response changes

    Full text link
    We investiaged the optical properties of four-layer BaRuO3_{3}, which shows a fermi-liquid-like behavior at low temperature. Its optical conductivity spectra clearly displayed the formation of a pseudogap and the development of a coherent peak with decreasing temperature. Temperature-dependences of the density nn and the scattering rate 1/τ1/\tau of the coherent component were also derived. As the temperature decreases, both nn and 1/τ1/\tau decrease for four-layer BaRuO3_{3}. These electrodynamic responses were compared with those of nine-layer BaRuO3_{3}, which also shows a pseudogap formation but has an insulator-like state at low temperature. It was found that the relative rates of change of both nn and 1/τ1/\tau determine either metallic or insulator-like responses in the ruthenates. The optical properties of the four-layer ruthenate were also compared with those of other pseudogap systems, such as high TcT_{c} cuprates and heavy electron systems.Comment: 7 figures. submitted to Phys. Rev.

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    Quantitative comparison of single- and two-particle properties in the cuprates

    Get PDF
    We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π,0)(\pi,0) points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure
    • 

    corecore