55 research outputs found

    Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009-2013

    Get PDF
    Short-lived organic brominated compounds make up a significant part of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five very short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLB-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr and CHBr2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ∼100 ppb O3 corresponding to the extra-tropical tropopause layer

    The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Get PDF
    More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS) region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) have been analyzed for molecular hydrogen (H2) mixing ratios (χ¬(H2)) and H2 isotopic composition (deuterium content, δD). More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS). These show that ¬ χ(H2) does not vary appreciably with O3-derived height above the thermal tropopause (TP), whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D); the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (¬ χ(CH4)) and nitrous oxide (χ-(N2O)), as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰] = −0.35 · ¬χ(CH4)[ppb]+768 and δD[‰] = −1.90 · χ(N2O)[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS. Samples that were collected from the Indian subcontinentup to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ¬(H2), but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ¬(CH4) increase in these samples. The significant correlation with χ¬(CH4) and the absence of a perceptible χ-(H2) increase that accompanies the δD decrease indicates that microbial production of very D-depleted H2 in the wet season may contribute to this phenomenon. Some of the samples have very high χ¬(H2) and very low δD values, which indicates a pollution effect. Aircraft engine exhaust plumes are a suspected cause, since the effect mostly occurs in samples collected close to airports, but no similar signals are found in other chemical tracers to support this. The isotopic source signature of the H2 pollution seems to be on the low end of the signature for fossil fuel burning

    Investigating African trace gas sources, vertical transport, and oxidation using IAGOS-CARIBIC measurements between Germany and South Africa between 2009 and 2011

    Get PDF
    Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10–12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and “background” air. The first two sources were defined with reference to previously reported surface source characterizations, while the term “background” was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10–12 km). Photochemical aging patterns for the samples with PBL contact revealed that the air had different degradation histories depending on the hemisphere in which they were emitted. In the southern hemisphere (SH) air masses experienced more dilution by clean background air whereas in the northern hemisphere (NH) air masses are less diluted or mixed with background air still containing longer lived NMHC. Using NMHC photochemical clocks ozone production was seen in the BB outflow above Africa in the NH
    corecore