18 research outputs found

    Laboratory simulation of cometary x rays using a high-resolution microcalorimeter

    Full text link
    X-ray emission following charge exchange has been studied on the University of California Lawrence Livermore National Laboratory electron beam ion traps EBIT-I and EBIT-II using a high-resolution microcalorimeter. The measured spectra include the K-shell emission from hydrogenlike and heliumlike C, N, O, and Ne needed for simulations of cometary x-ray emission. A comparison of the spectra produced in the interaction of O8+ with N2 and CH4 is presented that illustrates the dependence of the observed spectrum on the interaction gas.Comment: 11 pages, 2 figure

    The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment

    Full text link
    Neutrino oscillation experiments have proved that neutrinos are massive particles, but can't determine their absolute mass scale. Therefore the neutrino mass is still an open question in elementary particle physics. An international collaboration is growing around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences and technical expertise in a common effort towards this challenging experiment. We discuss the different scenarios and the impact of MARE as a complement of KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11 workshop, Tokyo 200

    High-resolution Charge Exchange Spectra with L-shell Nickel Show Striking Differences from Models

    No full text
    International audienceWe present the first high-resolution laboratory spectra of X-ray emission following L-shell charge exchange between nickel ions and neutral H2 and He. We employ the commonly used charge exchange models found in XSPEC and SPEX, ACX and SPEX-CX, to simulate our experimental results. We show that significant differences between data and models exist in both line energies and strengths. In particular, we find that configuration mixing may play an important role in generating lines from core-excited states, and may be improperly treated in models. Our results indicate that if applied to astrophysical data, these models may lead to incorrect assumptions of the physical and chemical parameters of the region of interest

    Human mannan-binding lectin inhibits the infection of influenza A virus without complement

    No full text
    Mannan-binding lectin (MBL) is a C-type serum lectin that is believed to play an important role in innate immunity. It is one of the collectin family, which is characterized by having a collagen-like sequence and a carbohydrate recognition domain. MBL can bind to sugar determinants of several micro-organisms, neutralize them and inhibit infection by complement activation through the lectin pathway and opsonization by collectin receptors. Bovine conglutinin and mouse MBL inhibit the infective and haemagglutinating activities of influenza A viruses. To identify the direct antiviral activity of human MBL against influenza A viruses that does not depend on complement activation or opsonization, we isolated native MBL from human serum and produced a recombinant MBL in Chinese hamster ovary (CHO) cells using a pNOW/CMV-A expression vector system. Native and recombinant human MBL exhibited neutralization activity against A/Ibaraki/1/90 (H3N2), with the plaque focus reduction assay at the viral attachment phase. Their activities were inhibited by EDTA, mannose and anti-human MBL antibody. Furthermore, at the viral expansion phase both MBL in culture medium prevented viral spreading from primary infected cells to neighbour cells. A virus recovery study using EDTA indicated that interaction between MBL and virus was reversible and non-damaging to the virus. Lectin blot and immunohistochemistry assays showed that these antiviral activities involved binding between MBL and two viral envelope proteins, haemagglutinin and neuraminidase. These findings suggest that human MBL can play an important role in innate immunity by direct viral neutralization and inhibition of viral spread, as well as an indirect role through opsonization and complement activation
    corecore