5,602 research outputs found

    Development of a programme to facilitate interprofessional simulation-based training for final year undergraduate healthcare students

    Get PDF
    Original report can be found at: http://www.health.heacademy.ac.uk/publications/miniproject/alinier260109.pdfIntroduction: Students have few opportunities to practise alongside students from other disciplines. Simulation offers an ideal context to provide them with concrete experience in a safe and controlled environment. This project was about the development of a programme to facilitate interprofessional scenario-based simulation training for final year undergraduate healthcare students and explored whether simulation improved trainees’ knowledge of other healthcare discipline’s roles and skills. Methods: A multidisciplinary academic project team was created and trained for the development and facilitation of this project. The team worked on the development of appropriate multiprofessional scenarios and a strategy to recruit the final year students on a volunteer basis to the project. By the end of the project 95 students were involved in small groups to one of fifteen 3-hour interprofessional simulation sessions. Staff role played the relatives, doctor on call, and patient when it was more appropriate than using a patient simulator (Laerdal SimMan/SimBaby) in the simulated community setting and paediatric or adult emergency department. Each session had 3 to 4 of the following disciplines represented (Adult/Children/Learning Disability Nursing, Paramedic, Radiography, Physiotherapy) and each student observed and took part in one long and relevant high-fidelity scenario. Half the students were randomly selected to fill in a 40-item questionnaire testing their knowledge of other disciplines before the simulation (control group) and the others after (experimental group). Students were assessed on the questions relating to the disciplines represented in their session. Results: By the end of the project 95 questionnaires were collected of which 45 were control group students (Questionnaire before simulation) and 50 experimental group students (Questionnaire after simulation). Both groups were comparable in terms of gender, discipline and age representation. Participants were: Adult nurses (n=46), Children’s nurses (n=4), Learning Disability nurses (n=7), Nurses, Paramedics (n=8), Radiographers (n=20), Physiotherapists (n=8). 15 sessions were run with an average of around 7 participants and at least 3 disciplines represented. The knowledge test results about the disciplines represented was significantly different between the control and experimental groups (Control 73.80%, 95% CI 70.95-76.65; and Experimental 78.81%, 95% CI 75.76-81.87, p=0.02). In addition, there were sometimes reliable differences between the groups in their view of multidisciplinary training; confidence about working as part of a multidisciplinary team was 3.33 (SD=0.80, Control) and 3.79 (SD=0.90, Experimental), p=0.011; their anticipation that working as part of a multidisciplinary team would make them feel anxious was 2.67 (SD=1.17, Control) and 2.25 (SD=1.04, Experimental), p=0.073; their perception of their knowledge of what other healthcare professionals can or cannot do was 3.00 (SD=0.91, Control) and 3.35 (SD=0.93, Experimental), p=0.066; their view that learning with other healthcare students before qualification will improve their relationship after qualification was 3.93 (SD=1.14, Control) and 4.33 (SD=0.81, Experimental), p=0.055; their opinion about interprofessional learning helping them to become better team workers before qualification was 3.96 (SD=1.24, Control) and 4.42 (SD=0.77, Experimental), p=0.036. Conclusions: Although the difference is relatively small (~5%), the results demonstrate that students gained confidence and knowledge about the skills and role of other disciplines involved in their session. Through simulation, the positivism of students about different aspects of learning or working with other healthcare disciplines has significantly improved. Students gained knowledge of other disciplines simply by being given the opportunity to take part in a multiprofessional scenario and observe another one. The results of the test and their reported perception about multidisciplinary team working suggest that they are better prepared to enter the healthcare workforce. Discussions during the debriefings highlighted the fact that multidisciplinary training is important. The main challenges identified have been the voluntary student attendance and timetabling issues forcing us to run the session late in the day due to the number of disciplines involved in each session and their different placement rota. The aim is now to timetable formally this session within their curriculum. Introducing simulation in the undergraduate curriculum should facilitate its implementation as Continuing Professional Development once these students become qualified healthcare professionals

    Inverse Scattering and Acousto-Optic Imaging

    Get PDF
    We propose a tomographic method to reconstruct the optical properties of a highly-scattering medium from incoherent acousto-optic measurements. The method is based on the solution to an inverse problem for the diffusion equation and makes use of the principle of interior control of boundary measurements by an external wave field.Comment: 10 page

    3D printing of gas jet nozzles for laser-plasma accelerators

    Full text link
    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\'ee

    Energy boost in laser wakefield accelerators using sharp density transitions

    Full text link
    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for single and multiple stages of rephasing

    A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Get PDF
    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately linear with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with Geant4 Monte-Carlo simulations, we measure a gamma-ray source size of less than 100 microns for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators

    Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales

    Full text link
    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density. It makes the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.Comment: 24 pages, 8 figure

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Spitzer Space Telescope Observations of the Magnetic Cataclysmic Variable AE Aqr

    Get PDF
    The magnetic cataclysmic variable AE Aquarii hosts a rapidly rotating white dwarf which is thought to expel most of the material streaming onto it. Observations of AE Aqr have been obtained in the wavelength range of 5 - 70 microns with the IRS, IRAC, and MIPS instruments on board the Spitzer Space Telescope. The spectral energy distribution reveals a significant excess above the K4V spectrum of the donor star with the flux increasing with wavelength above 12.5 microns. Superposed on the energy distribution are several hydrogen emission lines, identified as Pf alpha and Hu alpha, beta, gamma. The infrared spectrum above 12.5 microns can be interpreted as synchrotron emission from electrons accelerated to a power-law distribution dN=E^{-2.4}dE in expanding clouds with an initial evolution timescale in seconds. However, too many components must then be superposed to explain satisfactorily both the mid-infrared continuum and the observed radio variability. Thermal emission from cold circumbinary material can contribute, but it requires a disk temperature profile intermediate between that produced by local viscous dissipation in the disk and that characteristic of a passively irradiated disk. Future high-time resolution observations spanning the optical to radio regime could shed light on the acceleration process and the subsequent particle evolution.Comment: 15 pages, 3 figures, accepted for publication in Ap

    Mutualisms drive plant trait evolution beyond interaction‐related traits

    Get PDF
    Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system – epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non‐mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long‐term mean of non‐mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions – which are the most common – have a greater impact on non‐mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction‐related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution
    • 

    corecore