928 research outputs found

    Influence of natural surfactants on short wind waves in the coastal Peruvian waters

    Get PDF
    Results from measurements of wave slope statistics during the R/V Meteor M91 cruise in the coastal upwelling regions off the coast of Peru are reported. Wave slope probability distributions were measured with an instrument based on the reflection of light at the water surface and a method very similar to the Cox and Munk (1954b) sun glitter technique. During the cruise, the mean square slope (mss) of the waves was found to be very variable, despite the limited range of encountered wind speeds. The Cox and Munk (1954b) parameterization for clean water is found to overestimate mss, but most measurements fall in the range spanned by their clean water and slick parameterizations. The observed variability of mss is attributed to the wave damping effect of surface films, generated by increased biological production in the upwelling zones. The small footprint and high temporal resolution of the measurement allows for tracking abrupt changes in conditions caused by the often patchy structure of the surface films

    A group theoretical approach to structural transitions of icosahedral quasicrystals and point arrays

    Get PDF
    In this paper we describe a group theoretical approach to the study of structural transitions of icosahedral quasicrystals and point arrays. We apply the concept of Schur rotations, originally proposed by Kramer, to the case of aperiodic structures with icosahedral symmetry; these rotations induce a rotation of the physical and orthogonal spaces invariant under the icosahedral group, and hence, via the cut-and-project method, a continuous transformation of the corresponding model sets. We prove that this approach allows for a characterisation of such transitions in a purely group theoretical framework, and provide explicit computations and specific examples. Moreover, we prove that this approach can be used in the case of finite point sets with icosahedral symmetry, which have a wide range of applications in carbon chemistry (fullerenes) and biology (viral capsids).Peer reviewe

    Applying formal verification to microkernel IPC at meta

    Get PDF
    We use Iris, an implementation of concurrent separation logic in the Coq proof assistant, to verify two queue data structures used for inter-process communication in an operating system under development. Our motivations are twofold. First, we wish to leverage formal verification to boost confidence in a delicate piece of industrial code that was subject to numerous revisions. Second, we aim to gain information on the cost-benefit tradeoff of applying a state-of-the-art formal verification tool in our industrial setting. On both fronts, our endeavor has been a success. The verification effort proved that the queue algorithms are correct and uncovered four algorithmic simplifications as well as bugs in client code. The simplifications involve the removal of two memory barriers, one atomic load, and one boolean check, all in a performance-sensitive part of the OS. Removing the redundant boolean check revealed unintended uses of uninitialized memory in multiple device drivers, which were fixed. The proof work was completed in person months, not years, by engineers with no prior familiarity with Iris. These findings are spurring further use of verification at Meta

    The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging

    Get PDF
    Objectives: To develop guidelines describing a standardised approach to patient preparation and acquisition protocols for magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) of the small bowel and colon, with an emphasis on imaging inflammatory bowel disease. Methods: An expert consensus committee of 13 members from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) and European Society of Paediatric Radiology (ESPR) undertook a six-stage modified Delphi process, including a detailed literature review, to create a series of consensus statements concerning patient preparation, imaging hardware and image acquisition protocols. Results: One hundred and fifty-seven statements were scored for agreement by the panel of which 129 statements (82 %) achieved immediate consensus with a further 19 (12 %) achieving consensus after appropriate modification. Nine (6 %) statements were rejected as consensus could not be reached. Conclusions: These expert consensus recommendations can be used to help guide cross-sectional radiological practice for imaging the small bowel and colon. Key points: • Cross-sectional imaging is increasingly used to evaluate the bowel • Image quality is paramount to achieving high diagnostic accuracy • Guidelines concerning patient preparation and image acquisition protocols are provided

    A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone

    Get PDF
    Carbon budgets for the polar oceans require better constraint on air–sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air–sea flux in the ice–ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air–sea interface. We use the model to estimate k along the drift track of ice-tethered profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d−1, and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff), the minimum value of keff was 10−55 m d−1 near f = 0 with values exceeding keff = 5 m d−1 at f = 0.4. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a wind speed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist

    Intellectual abilities, language comprehension, speech, and motor function in children with spinal muscular atrophy type 1

    Get PDF
    Background: Spinal muscular atrophy (SMA) is a chronic, neuromuscular disease characterized by degeneration of spinal cord motor neurons, resulting in progressive muscular atrophy and weakness. SMA1 is the most severe form characterized by significant bulbar, respiratory, and motor dysfunction. SMA1 prevents children from speaking a clearly understandable and fluent language, with their communication being mainly characterized by eye movements, guttural sounds, and anarthria (type 1a); severe dysarthria (type 1b); and nasal voice and dyslalia (type 1c). The aim of this study was to analyze for the first time cognitive functions, language comprehension, and speech in natural history SMA1 children according to age and subtypes, to develop cognitive and language benchmarks that provide outcomes for the clinical medication trials that are changing SMA1 course/trajectory. Methods: This is a retrospective study including 22 children with SMA1 (10 affected by subtype 1a-1b: AB and 12 by 1c: C) aged 3–11 years in clinical stable condition with a coded way to communicate “yes” and “no”. Data from the following assessments have been retrieved from patient charts: one-dimensional Raven test (RCPM), to evaluate cognitive development (IQ); ALS Severity Score (ALSSS) to evaluate speech disturbances; Brown Bellugy modified for Italian standards (TCGB) to evaluate language comprehension; and Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) to assess motor functioning. Results: SMA 1AB and 1C children were similar in age, with the former characterized by lower CHOP-INTEND scores compared to the latter. All 22 children had collaborated to RCPM and their median IQ was 120 with no difference (p = 0.945) between AB and C. Global median score of the speech domain of the ALSSS was 5; however, it was 2 in AB children, being significantly lower than C (6.5, p < 0.001). TCGB test had been completed by 13 children, with morphosyntactic comprehension being in the normal range (50). Although ALSSS did not correlate with both IQ and TCGB, it had a strong (p < 0.001) correlation with CHOP-INTEND described by an exponential rise to maximum. Conclusions: Although speech and motor function were severely compromised, children with SMA1 showed general intelligence and language comprehension in the normal range. Speech impairment was strictly related to global motor impairment

    Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach

    Get PDF
    In this contribution, a detailed investigation of surface thermal patterns on the water surface is presented, with wind speeds ranging from 1 to 7 m s  − 1 and various surface conditions. Distinct structures can be observed on the surface—small-scale short-lived structures termed fish scales and larger-scale cold streaks that are consistent with the footprints of Langmuir circulations. The structure of the surface heat pattern depends strongly on wind-induced stress. Consistent behavior regarding the spacing of cold streaks can be observed in a range of laboratory facilities when expressed as a function of water-sided friction velocity, u * . This behavior systematically decreased until a point of saturation at u *  = 0.7 cm/s. We present a new image processing-based approach to the analysis of the spacing of cold streaks based on a machine learning approach to classify the thermal footprints of near-surface turbulence. Comparison is made with studies of Langmuir circulation and the following key points are found. Results suggest a saturation in the tangential stress, anticipating that similar behavior will be observed in the open ocean. A relation to Langmuir numbers shows that thermal footprints in infrared images are consistent with Langmuir circulations and depend strongly on wind wave conditions

    Lake-size dependency of wind shear and convection as controls on gas exchange

    Get PDF
    High-frequency physical observations from 40 temperate lakes were used to examine the relative contributions of wind shear (u*) and convection (w*) to turbulence in the surface mixed layer. Seasonal patterns of u* and w* were dissimilar; u* was often highest in the spring, while w * increased throughout the summer to a maximum in early fall. Convection was a larger mixed-layer turbulence source than wind shear (u */w*-1 for lakes* and w* differ in temporal pattern and magnitude across lakes, both convection and wind shear should be considered in future formulations of lake-air gas exchange, especially for small lakes. © 2012 by the American Geophysical Union.Jordan S. Read, David P. Hamilton, Ankur R. Desai, Kevin C. Rose, Sally MacIntyre, John D. Lenters, Robyn L. Smyth, Paul C. Hanson, Jonathan J. Cole, Peter A. Staehr, James A. Rusak, Donald C. Pierson, Justin D. Brookes, Alo Laas, and Chin H. W
    corecore