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Abstract

In this paper we describe a group theoretical approach to the study of structural transi-
tions of icosahedral quasicrystals and point arrays. We apply the concept of Schur rotations,
originally proposed by Kramer, to the case of aperiodic structures with icosahedral symme-
try; these rotations induce a rotation of the physical and orthogonal spaces invariant under the
icosahedral group, and hence, via the cut-and-project method, a continuous transformation of
the corresponding model sets. We prove that this approach allows for a characterisation of
such transitions in a purely group theoretical framework, and provide explicit computations
and specific examples. Moreover, we prove that this approach can be used in the case of fi-
nite point sets with icosahedral symmetry, which have a wide range of applications in carbon
chemistry (fullerenes) and biology (viral capsids).

1 Introduction

Non-crystallographic symmetries appear in a wide range of physical and biological structures.
Prominent examples are quasicrystals, alloys with long-range order lacking translational period-
icity, discovered by Shechtman in 1984 [1], fullerenes, molecules of carbon atoms arranged to
form icosahedral cages [2], and viral capsids, the protein containers which encapsulate the viral
genomic material [3]. Quasicrystals are described mathematically via cut-and-project schemes
and model sets [4, 5, 6], which correspond to infinite Delone point sets [5]. On the other hand, the
arrangement of proteins in a viral capsid or the atoms of fullerenes are modeled via finite point sets
(arrays) with icosahedral symmetry. In particular, Caspar-Klug theory and generalisations thereof
[7] predict the locations and relative orientations of the capsid proteins via icosahedral surface
lattices. Moreover, the three-dimensional organisation of viral capsids can be modeled via finite
nested point sets displaying icosahedral symmetry at each radial level [8, 9, 10, 11] or 3D icosa-
hedral tilings [12]. Such point sets can be characterised via affine extensions of the icosahedral
group [8, 9], the Kac-Moody algebra formalism [10], or in a finite group theoretical framework
[11]. The latter provides a link between the construction of quasicrystals and point arrays, the
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common thread being the orthogonal projection of points of a higher dimensional lattice into a
space invariant under the icosahedral group.

Quasicrystals undergo structural transitions as a consequence of changes of thermodynamical
parameters. Experimental observations showed that aperiodic structures transform into higher
order structures (crystal lattices) or other quasicrystalline solids [13, 14, 15]. These transitions
are characterised by the occurrence of a symmetry breaking, thus allowing for their analysis in
the framework of the phenomenological Landau theory for phase transitions [16, 17]. Similar
transformations occur in virology; specifically, viruses undergo conformational changes as part
of their maturation process, important for becoming infective, resulting in an expansion of the
capsid [18]. Experiments and theoretical analysis [19] proved that the initial and final states of the
transformation retain icosahedral symmetry; however, little is known about the possible transition
paths, which according to a first mathematical approach are likely to be asymmetrical [20].

In this paper we characterise structural transitions of icosahedral quasicrystals and point ar-
rays in a group theoretical framework. The starting point is the crystallographic embedding of
the icosahedral group into the point group of the hypercubic lattices in R6 [21, 22, 4], which is
a standard way of defining icosahedral quasicrystals with the cut-and-project method. We then
construct continuous transformations between icosahedral structures based on the Schur rotation
method, originally introduced by Kramer et al. [23, 24], for the case of transitions between cubic
and aperiodic order with tetrahedral symmetry. Specifically, we consider two distinct crystallo-
graphic representations of the icosahedral group sharing a common maximal subgroup G, and
define rotations in S O(6) that keep the G-symmetry preserved. Such rotations induce, in projec-
tion, continuous G-symmetry preserving transformations of the corresponding model sets or point
arrays. We show that these rotations are parameterised by angles belonging to a k-dimensional
torus Tk, which are candidates to be the order parameters of the Landau theory. Moreover, we
classify, based on the results of our previous paper [22], the possible boundary conditions of the
transitions, which, in this context, correspond to specific angles in Tk.

Structural transitions of quasicrystals and point arrays have been analysed previously with dif-
ferent approaches, for examples with the phason strain approach [25], which was later proved to
be equivalent to the Schur rotation method [26]. Moreover, Indelicato et al. [27, 28] define higher
dimensional generalisations of the Bain strain between crystal lattices which induce, in projection,
structural transformations of quasicrystals. In the latter reference it is proved that the Schur ro-
tation method is related to the Bain strain in the case of transitions between cubic to icosahedral
order [27], and some specific examples are given in the case of transitions between icosahedral
tilings of the space. In this work we demonstrate analytically that the Schur rotation is equivalent
to a Bain strain transformation between two congruent six-dimensional lattices. We argue that
the advantage of the approach discussed here is the possibilty of classifying the boundary condi-
tions and identifying the order parameters of the transition, while the Bain strain allows only a
parameterization of the transitions in terms of paths in the centralisers of the maximal subgroups.
Therefore, this work paves the way for a dynamical analysis of the possible transition pathways,
by constructing Hamiltonians invariant under the symmetry group of the system in terms of the
order parameters of the transition and analysing the resulting energy landscapes, as in previous
works [19].

The paper is organised as follows. After reviewing, in Section 2, the crystallographic embed-
ding of the icosahedral group, based on [22], we provide, in Section 3, the theoretical framework
for the analysis of transitions of quasicrystals and point arrays with icosahedral symmetry, by
applying the Schur rotation method and generalising it for any maximal subgroup G of the icosa-
hedral group I . In Section 4 we explicitly compute the Schur rotations for the three maximal
subgroups of I, namely the tetrahedral group T and the dihedral groups D10 and D6, classifying
the possible boundary conditions of the transitions, and provide specific examples. We conclude
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in Section 5 by discussing further applications and future work.

2 Crystallographic embedding of the icosahedral group

Let L be a lattice in Rd with generator matrix B ∈GL(d,R). The point group P of L is the set
of all the orthogonal transformations that leave L invariant:

P := {Q ∈ O(d) : ∃M ∈GL(d,Z) : QB = BM} .

P is finite and does not depend on the matrix B [29]. A (finite) group of isometries G ⊆ O(k) is
said to be crystallographic in Rk if it leaves a lattice L in Rk invariant, or, equivalently, if it is
the subgroup of a point group P ⊆ O(k). The crystallographic restriction states that, for k = 2,3, a
crystallographic group G must contain elements of order 1,2,3,4 or 6 [5]. Following Levitov and
Rhyner [21], we introduce the following:

Definition 2.1. Let G ⊆ O(k) be a finite non-crystallographic group of isometries. A crystallo-
graphic representation of G is a matrix group G̃ satisfying the following conditions:

(C1) G̃ stabilises a lattice L in Rd, with d > k, i.e. G̃ is a subgroup of the point group P of L;

(C2) G̃ is reducible in GL(d,R) and contains an irreducible representation ρk of G of degree k,
i.e.

G̃ ' ρk ⊕ρ
′, deg(ρ′) = d− k. (1)

The condition (C2) is necessary for the construction of quasicrystals with G-symmetry via the
cut-and-project method [5, 4].

Chiral icosahedral symmetry is described by the icosahedral group I, which corresponds to
the set of all the rotations that leave an icosahedron invariant. It has order 60 and is the largest
finite subgroup of the special orthogonal group S O(3) [30]. It is isomorphic to the alternating
group A5, and has presentation

I = 〈g2,g3 : g2
2 = g3

3 = (g2g3)5 = e〉,

where g2 and g3 represent, geometrically, a two- and a three-fold rotation, respectively. The
element g5 := g2g3 is a five-fold rotation, hence I is non-crystallographic in R3. Its character table
is the following (τ := 1

2

(
1 +
√

5
)

denotes the golden ratio, and τ′ := 1−τ its Galois conjugate):

Irrep E C(g5) C(g2
5) C(g2) C(g3)

A 1 1 1 1 1
T1 3 τ τ′ -1 0
T2 3 τ′ τ -1 0
G 4 -1 -1 0 1
H 5 0 0 1 -1

The minimal crystallographic dimension of I is six (cf. Definition 2.1) [21]; an explicit crystallo-
graphic representation Ĩ of I is given by [22]:

Ĩ(g2) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0
1 0 0 0 0 0


, Ĩ(g3) =



0 0 0 0 0 1
0 0 0 1 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0


. (2)
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There are three non-equivalent Bravais lattices in R6 left invariant by I, classified in [21], namely
the simple cubic (SC), body-centered cubic (BCC) and face-centered cubic lattice (FCC):

LS C = {x = (x1, . . . , x6) : xi ∈ Z} ,

LBCC =

{
x =

1
2

(x1, . . . , x6) : xi ∈ Z, xi = x j mod 2,∀i, j = 1, . . . ,6
}
,

LFCC =

x =
1
2

(x1, . . . , x6) : xi ∈ Z,
6∑

i=1

xi = 0 mod 2

 .
The point group of these three lattices coincide, and it is referred to as the hyperoctahedral group
in six dimensions, and denoted by B6. Ĩ leaves invariant two three-dimensional spaces, usually
denoted as E‖ (the physical space) and E⊥ (the orthogonal space), both totally irrational with
respect to any of the hypercubic lattices in R6. The matrix R ∈ O(6) given by

R =
1

√
2(2 +τ)



τ 1 0 τ 0 1
0 τ 1 −1 τ 0
−1 0 τ 0 −1 τ
0 −τ 1 1 τ 0
τ −1 0 −τ 0 1
1 0 τ 0 −1 −τ


. (3)

decomposes Ĩ into irreducible representations, i.e.

Î := R−1ĨR = ρ3⊕ρ
′
3, (4)

with ρ3 ' T1 and ρ′3 ' T2. The explicit forms of ρ3 and ρ′3 are given in Table 1. If π‖ : R6 →

E‖ denotes the projection operator into the parallel space (and π⊥ the corresponding orthogonal
projection), we have, by linear algebra:

R−1 =

(
π‖

π⊥

)
, (5)

This setup allows the construction of icosahedral quasicrystals via the cut-and-project scheme:

E‖
π‖

←− E‖⊕E⊥
π⊥

−→ E⊥

∪

L

where L is one of the hypercubic lattices in R6. Specifically, we follow [4] and consider as
window W the projection into the orthogonal space of the Voronoi cell V(0) of the origin, i.e.
W = π⊥(V(0)). Then the model set (cf. [6])

Σ(W) :=
{
π‖(v) : v ∈ L, π⊥(v) ∈W

}
(6)

defines a quasicrystal in R3 with icosahedral symmetry [4, 22, 27]; in a similar way, icosahedral
tilings of the space can be obtained with the dualisation method [4, 12, 27].

In order to define structural transitions between icosahedral model sets with the Schur rotation
method, we consider the classification of the crystallographic representations of I embedded in B6
and the subsequent subgroup structure analysis provided by [22]. Specifically, the crystallographic
representations of I form a unique conjugacy class of subgroups of B6, which we denote by
CB6(Ĩ), whose order is 192, and whose representative is given by (2). LetG be a maximal subgroup
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Generator Irrep ρ3 ' T1 Irrep ρ′3 ' T2

g2
1
2

 τ−1 1 τ

1 −τ τ−1
τ τ−1 −1

 1
2

 τ−1 −τ −1
−τ −1 τ−1
−1 τ−1 −τ


g3

1
2

 τ τ−1 1
1−τ −1 τ

1 −τ 1−τ

 1
2

 −1 1−τ −τ

τ−1 τ −1
τ −1 1−τ


Table 1: Explicit forms of the irreps ρ3 and ρ′3 with Ĩ ' ρ3⊕ρ

′
3.

of the icosahedral group I, namely the tetrahedral group T or the dihedral groups D10 and D6,
and let G̃ be a crystallographic representation of G embedded into the hyperoctahedral group B6.
Without loss of generality, we consider G̃ as a subgroup of the crystallographic representation Ĩ
given in (2); let CB6(G̃) denote the conjugacy class of G̃ in B6. We have the following (for the
proof, see [22]):

Proposition 2.1. Let G be a maximal subgroup of I. Then for every P ∈ CB6(G̃) there exist exactly
two crystallographic representations of I,H1,H2 ∈ CB6(Ĩ), such that P =H1∩H2.

We point out that in the case of achiral icosahedral symmetry, the symmetry group to be
considered is the Coxeter group H3 [31]. Due to the isomorphism H3 ' I×Z2, the represen-
tation theory of H3 easily follows from this direct product structure. In particular, the repre-
sentation H3 := Ĩ ⊗ Γ, where Γ = {1,−1} is the non-trivial irreducible representation of Z2, is a
six-dimensional crystallographic representation of H3 in the sense of Definition 2.1. Therefore, all
the analysis developed in the following still holds for achiral model sets and arrays.

3 Schur rotations between icosahedral structures

In this section we define structural transitions between icosahedral quasicrystals and finite
point arrays using the Schur rotation method, and prove the connection with the Bain strain method
described in [27].

Let G̃ be a representation of a maximal subgroup G of I, which is a matrix subgroup of Ĩ
given in (2). By Proposition 2.1, there exists a unique crystallographic representation of I in B6,
which we denote by ĨG, such that G̃ is a subgroup of Ĩ and ĨG, i.e. G̃ = Ĩ∩ ĨG. The matrix R in
(3), which reduces Ĩ into irreps as in (4), decomposes the representation G̃ as follows:

Ĝ := R−1G̃R = G1⊕G2, (7)

whereG1 andG2 are matrix subgroups of the irreps ρ3 and ρ′3 given in Table 1, respectively. Notice
that G1 and G2 are not necessarily irreducible representations of G̃.

The matrix R in general does not reduce the representation ĨG, since the subspaces E‖ and E⊥,
which are invariant under Ĩ, are not necessarily invariant under ĨG. Let us denote by RG ∈ O(6)
the orthogonal matrix that reduces ĨG into irreps, i.e.

ÎG := R−1
G
ĨGRG ' T1⊕T2,

where T1 and T2 are the two non-equivalent three-dimensional irreps of I. This matrix carries the
bases of a physical and a parallel space which are invariant under ĨG. We denote these spaces by
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E‖
G

and E⊥
G

, respectively, and we write π‖
G

and π⊥
G

for the corresponding projections. By (5), we
have

R−1
G

=

 π‖Gπ⊥
G

 .
The matrix RG is in general not unique. With a suitable choice of the basis vectors constituting

the columns of RG, we assume det(RG) and det(R) have the same sign, i.e. R and RG belong to the
same connected component of O(6). Furthermore, since G̃ is a common subgroup of Ĩ and ĨG, it
is possible to choose RG ∈ O(6) such that Ĝ = Î∩ĤG, i.e.

R−1GR = R−1
G

GRG, ∀G ∈ G̃ ⇒ (RGR−1)−1G(RGR−1) = G, ∀G ∈ G̃. (8)

Therefore RGR−1 belongs to the centraliser of G̃ in GL(6,R), i.e. the set

Z(G̃,R) := {A ∈GL(6,R) : AG = GA, ∀G ∈ G̃} .

Hence there exists a matrix MG ∈Z(G̃,R)∩O(6), denoted as the Schur operator related to G, such
that RG = MGR. Since R and RG have determinants with equal signs by assumption, we have that
det(MG) > 0, hence MG is a rotation in S O(6). Let us consider a path

MG(t) : [0,1] −→Z(G̃,R)∩S O(6) (9)

that connects MG to the identity matrix I6, i.e. MG(0) = I6 and MG(1) = MG. Such a path is
referred to as the Schur rotation associated with G̃. The name comes from Schur’s Lemma in
Representation Theory, that gives constraints on the matrices that commute with a representation
of a group [32]. In Section 4 we prove the existence and determine the explicit forms of (9) for all
the maximal subgroups of the icosahedral group.

Let us consider the path RG(t) : [0,1]→ O(6) defined by RG(t) := MG(t)R. For every t ∈ [0,1]
the matrix RG(t) encodes the basis of a physical space E‖t and an orthogonal space E⊥t that carry
the representations G1 and G2 of G as in (7) since

RG(t)−1G̃RG(t) = R−1MG(t)−1G̃MG(t)R = R−1G̃R = G1⊕G2. (10)

In particular, we have E‖t = MG(t)E‖ and E‖0 ≡ E‖, E‖1 ≡ E‖
G

(and similarly for the orthogonal

spaces). For t ∈ [0,1], the projections π‖t : R6→ E‖t and π⊥t : R6→ E⊥t are given by (compare with
(5)): (

π‖t
π⊥t

)
= R−1

G
(t) = R−1MG(t)−1 =

(
π‖

π⊥

)
MG(t)−1 =

(
π‖MG(t)−1

π⊥MG(t)−1

)
. (11)

With this setup, we can define structural transitions between icosahedral quasicrystals that
keep the symmetry encoded by G preserved. Specifically, let L be one of the three hypercubic
lattices in R6 described in Section 2, and let Σ(W) be the icosahedral model set as in (6). Let us
then consider, for all t ∈ [0,1], the projection Wt := π‖t ((V(0)) ofV(0) into the space E⊥t . We define
the family of model sets

Σt ≡ Σ(Wt) :=
{
π‖t (v) : v ∈ L, π⊥t (v) ∈Wt

}
. (12)

By construction, Σ0 ≡ Σ(W) and Σ1 possess icosahedral symmetry, whereas the intermediate states
Σt, for t ∈ (0,1), display G-symmetry since, by (10):

π‖t (G̃v) = G1π
‖
t (v), ∀t ∈ (0,1). (13)

Hence, the Schur rotation MG(t) as in (9) defines a continuous transformation of the model set
Σ(W) into another icosahedral quasilattice, where G-symmetry is preserved. We point out that, in
the higher dimensional space, the latticeL is fixed and the transformation is induced by the rotation
of the physical and orthogonal spaces (see Figure 1). The angle(s) of rotation correspond(s) to the
degree(s) of freedom of the transformation, and can be chosen as the order parameter(s) of the
transition in the framework of the Landau theory [16].
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β

Figure 1: Illustration of the Schur rotation for a one-dimensional quasicrystal. The physical space
(straight line in red) and the orthogonal space (straight line in blue) undergo a rotation of an angle
β, resulting in the new physical and orthogonal spaces (dashed lines). The two-dimensional lattice
remains fixed throughout the rotation.

Transitions of finite icosahedral point sets. In the context of virology and carbon chemistry,
the arrangements of viral proteins and carbon atoms in fullerenes are modeled via finite point
sets (arrays) with icosahedral symmetry. The method developed here can also be applied to anal-
yse structural transitions between icosahedral arrays, creating finite point sets via projection, as
opposed to the infinite ones generated by the cut-and-project scheme, at every time t of the trans-
formation. Indeed, let C = {π‖(vi) : vi ∈ L, i = 1, . . . ,n} be a finite point set in E‖, obtained via the
projection of points of a hypercubic latticeL in R6. Let us assume that C is closed under the action
of the irrep ρ3 of I (cf. (4)), i.e. ρ3C ⊆ C. The projection operators π‖t given in (11) can be used to
define a family of arrays Ct, for t ∈ [0,1], given by:

Ct :=
{
π‖t (vi) : vi ∈ C, i = 1, . . . ,n

}
. (14)

It follows from (13) that the point sets Ct are invariant under the representation G1 of G (cf. (7))
for all t ∈ (0,1), and moreover possess icosahedral symmetry for t = 0 and t = 1. We refer to [11]
for a detailed method for the construction of finite nested icosahedral point sets via projection, in
connection with the structure of viral capsids.

Connection with the Bain strain method. In crystallography and condensed matter physics,
the concept of Bain strain relates to deformations of three-dimensional lattices that keep some
symmetry preserved, described by a common subgroup of the point groups of the lattices which
constitute the initial and final states [29]. Indelicato et al. [27, 28] provided a higher-dimensional
generalisation of the Bain strain for lattices in Rn. In this context, given two lattices L0 and
L1 with generator matrices B0 and B1, respectively, and a subgroup H of P(L0) and P(L1), a
transition between L0 and L1 with symmetry H is a path B(t) : [0,1]→GL(n,R) such that, if Lt

denotes the intermediate lattice with generator matrix B(t), then H ⊆ P(Lt), for all t ∈ [0,1]. If
L0 and L1 are 6D hypercubic lattices, and H = G̃ a maximal subgroup of Ĩ, then B(t) induces a
continuous transformation

Σ̃t :=
{
π‖(vt) : π⊥(vt) ∈ π⊥(Vt(0))

}
, (15)
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where vt := B(t)m, m ∈ Z6, is a point in the intermediate lattice Lt, andVt(0) denotes the Voronoi
cell of Lt at the origin. The symmetry identified by G is preserved since G1π

‖(vt) = π‖(G̃vt), and
G̃vt ∈ Lt since G̃ ⊆ P(Lt) for all t ∈ [0,1]. We notice that in this approach the lattice undergoes a
transformation, whereas the physical and orthogonal spaces remain fixed.

As already pointed out in [27], the Schur rotation and the generalised Bain strain are related.
This can easily be proved with the mathematics developed so far. In particular, if MG(t) is a Schur
rotation associated with G as in (9), let us define the path B̂(t) : [0,1]→GL(6,R) as

B̂(t) := MG(t)−1B0. (16)

We have, using (11),
π‖

(
B̂(t)

)
= π‖

(
MG(t)−1B0

)
= π‖t (B0),

and similarly for π⊥t . Therefore

Σ̃t =
{
π‖(vt) : π⊥(vt) ∈ π⊥(Vt(0))

}
=

{
π‖t (B0m) : π⊥t (B0m) ∈ π⊥t (V(0))

}
= Σt,

and moreover G̃ ⊆ P(Lt), since P
(
B̂(t)

)
= M−1

G
(t)P(B0)MG(t) (this is true since, for every lattice

L in Rn with generator matrix B, P(RB) = RP(B)R−1, for R ∈ O(n) [29]) and MG(t) ∈ Z(G̃,R) for
all t. Hence the Schur rotation is equivalent to a Bain strain transformation between congruent
lattices, i.e. whose bases are related via a rotation [33]. The advantage of the former is that the use
of Schur’s Lemma and tools from representation theory can be used in the computation and allow
a characterisation of such transitions in a purely group theoretical framework.

4 Computations and applications

In this section we compute the Schur rotations for the maximal subgroups of the icosahedral
group, and discuss applications and specific examples. It follows from Section 3 that the crucial
point is the computation of the matrix groups Z(G̃,R)∩ S O(6), where G̃ ⊆ Ĩ is a representation
of G in B6. To this aim, we first focus on the group Z(Ĝ,R)∩ S O(6), which consists of all the
rotations in S O(6) that commute with the matrices constituting the reduced representation Ĝ. A
matrix in this group can be easily computed using Schur’s Lemma [32]; the groupZ(G̃,R)∩S O(6)
then easily follows since the following holds (see [30]):

Z(Ĝ,R) =Z(R−1G̃R,R) = R−1Z(G̃,R)R. (17)

We now consider in detail the computations and examples for each maximal subgroup of the
icosahedral group.

4.1 Tetrahedral group T

The tetrahedral group T is the rotational symmetry group of a tetrahedron, generated by a two-
fold rotation g2 and a three-fold rotation g3d such that g2

2 = g3
3d = (g2g3d)3 = e. It is isomorphic to

the alternating group A4 and its character table is given by (cf. [32]):

Irrep C(e) 4C3 4C2
3 3C2

A 1 1 1 1
E1 1 ω ω2 1
E2 1 ω2 ω 1
T 3 0 0 -1

8



where ω = e
2πi
3 . Note that the representations E1 and E2 are complex, while their direct sum

E := E1 ⊕ E2 is real and irreducible in GL(2,R). An explicit representation T̃ of T , which is a
subgroup of Ĩ, is given by

T̃ =

〈


0 0 0 0 0 1
0 0 0 0 1 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0
1 0 0 0 0 0


,



0 1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0


〉
.

This representation can be found with the aid of the software GAP [34], which is designed for
problems in computational group theory (see [22] for more details). All the subsequent group
theoretical computations were performed in GAP.

The matrix R as in (3) is such that

T̂ := R−1T̃R = Γ1⊕Γ2, (18)

where Γ1 and Γ2 are matrix subgroups of ρ3 and ρ′3 as in (4), respectively, and both are equivalent to
the irrep T of T . Due to this equivalence, there exists a matrix Q ∈GL(3,R) such that Q−1Γ2Q =

Γ1. The explicit forms of Γ1, Γ2 and Q are given in Table 2. Note that Q can be chosen to be
orthogonal. Let us define Q̂ := I3 ⊕Q ∈ O(6,R), where I3 denotes the 3× 3 identity matrix; then
we have

T := Q̂−1T̂ Q̂ = Γ1⊕Γ1. (19)

We consider the setZ(T ,R)∩S O(6). Writing a matrix N in this group as

N =

(
N1 N2
N3 N4

)
,

where Ni are 3× 3 matrices, for i = 1, . . . ,4, we impose NT = TN, i.e. N(Γ1 ⊕Γ1) = (Γ1 ⊕Γ1)N.
Using Schur’s Lemma and imposing orthogonality, we obtain

N = N(β) =

(
cos(β)I3 −sin(β)I3
sin(β)I3 cos(β)I3

)
,

where β belongs to the unit circle S 1. Notice that N(α)N(β) = N(α+β). Putting together (19) and
(17) we obtain

Z(T̃ ,R)∩S O(6) =

{
(RQ̂)N(β)(RQ̂)−1 : N(β) =

(
cos(β)I3 −sin(β)I3
sin(β)I3 cos(β)I3

)
, β ∈ S 1

}
.

It follows that the groupZ(T̃ ,R)∩S O(6) is isomorphic to S 1, hence it is a compact and connected
Lie group. Therefore, the angle β ∈ S 1 can be chosen as an order parameter for the transitions with
tetrahedral symmetry.

In order to compute the Schur rotations between icosahedral quasicrystals with T -symmetry,
we need to fix the boundary conditions, i.e. imposing the end and the start of the transition to have
icosahedral symmetry. In particular, we consider the crystallographic representation ĨT of I with
the property that T̃ = Ĩ∩ ĨT :

ĨT =

〈


0 0 0 −1 0 0
0 0 0 0 0 −1
0 0 −1 0 0 0
−1 0 0 0 0 0
0 0 0 0 −1 0
0 −1 0 0 0 0


,



0 0 0 −1 0 0
0 0 0 0 −1 0
0 −1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
−1 0 0 0 0 0


〉
.
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Generator Irrep Γ1 Irrep Γ2

g2
1
2

 τ−1 1 τ

1 −τ τ−1
τ τ−1 −1

 1
2

 τ−1 −τ −1
−τ −1 τ−1
−1 τ−1 −τ


g3d

1
2

 1−τ 1 τ

1 τ 1−τ
−τ τ−1 −1

 1
2

 1−τ τ −1
−τ −1 1−τ
−1 τ−1 τ


Q = 1

4

 3−τ 1 τ+ 2
−τ−2 3−τ 1
−1 −τ−2 3−τ


Table 2: Explicit forms of the irreps Γ1 and Γ2 of the tetrahedral group and the matrix Q ∈ O(3)
such that Q−1Γ2Q = Γ1 (cf. (18)).

Given MT (β) ∈ Z(T̃ ,R)∩S O(6), we consider the matrix RT (β) := MT (β)R ∈ O(6) and impose

RT (β)−1ĨTRT (β) ' T1⊕T2 . (20)

We solve (20) with respect to β; in other words, we look for angles β̂ ∈ S 1 such that the correspond-
ing matrix RT (β̂) decomposes into irreps of the representation ĨT . Specifically, let M2 and M3
denote the generators of ĨT , and let us define the matrices K j(β) := RT (β)−1M jRT (β), for j = 2,3.
Condition (20) is then equivalent to the following system of 36 equations: (K2(β))i j = 0, (K2(β)) ji = 0

(K3(β))i j = 0, (K3(β)) ji = 0
(21)

for i = 1,2,3 and j = 4,5,6. The solutions of (21) are given by:

β̂ ∈

{
−arctan

(
1
2

)
, −arctan

(
1
2

)
+π, arctan(2), arctan(2)−π

}
=: S T .

Hence the number of Schur operators associated withT is finite; the elements in S T provide all the
possible boundary conditions for the analysis of transitions with T -symmetry between icosahedral
order. Specifically, since S 1 is connected, we can consider any path β(t) : [0,1]→ S 1 that connects
0 with β̂ ∈ S T , i.e. β(0) = 0 and β(1) = β̂. Then the corresponding Schur rotation MT (t) is given
by MT (β)◦β(t) = MT (β(t)) : [0,1]→Z(T̃ ,R)∩S O(6).

Example: tetrahedral transition with an intermediate cubic lattice. We consider as an ex-
plicit example of a tetrahedral transition the path β(t) = β̂t, that connects 0 with β̂ = −arctan

(
1
2

)
.

The lattice L in R6 is taken as the simple cubic lattice with the standard basis in R6. The matrix
RT (t) = MT (β̂t)R encodes the projections π‖t and π⊥t as in (11), that define the family of model sets
Σt as in (12). In Figure 2 we show a patch of the resulting quasilattices for t = 0, 0.5 and 1. These
are very interesting results; indeed, the starting and final states display icosahedral aperiodicity,
as expected by the boundary conditions, while for t = 0.5 the corresponding structure is actually a
three-dimensional lattice, i.e. it is periodic. Hence such a transition has an intermediate periodic
order, which is in accordance to the previous result by Kramer [23]. From a group theoretical
point of view, this implies that there exists a subgroup of B6 isomorphic to the octahedral group O
(i.e. the symmetry group of a cube, with order 48), which contains T̃ as a subgroup.
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Figure 2: Example of a transition with tetrahedral symmetry. The model sets in (a) and (c) corre-
spond to the starting and final states, respectively, and display icosahedral symmetry. The inter-
mediate state in (b) exhibits octahedral symmetry and defines a three-dimensional cubic lattice.

4.2 Dihedral groupD10

The dihedral group D10 is generated by two elements g2d and g5d such that g2
2d = g5

5d =

(g2dg5d)2 = e. Its character table is as follows [32]:

Irrep E 2C5 2C2
5 5C2

A1 1 1 1 1
A2 1 1 1 -1
E1 2 τ−1 −τ 0
E2 2 −τ τ−1 0

An explicit representation D̃10 as a matrix subgroup of Ĩ is given by

D̃10 =

〈


0 0 0 0 0 −1
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
−1 0 0 0 0 0


,



0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 −1 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0


〉
.

In order to compute the Schur rotations associated with D10, we proceed in a similar way as in
the tetrahedral case. The projection matrix R in (3) decomposes D̃10 as

D̂10 := R−1D̃10R = D1⊕D2, (22)

where D1 and D2 are matrix subgroups of ρ3 and ρ′3, respectively, that are reducible representations
of D10. In particular, from its character table we have that D1 ' A2 ⊕ E1 and D2 ' A2 ⊕ E2 in
GL(3,R). In order to find the Schur operators forD10, we first reduce D1 and D2 into irreps, using
tools from the representation theory of finite groups (see, for example, [35]). In particular, we
determine two orthogonal matrices, P1 and P2, such that

D̂1 := P−1
1 D1P1 ' A2⊕E1, D̂2 := P−1

2 D2P2 ' A2⊕E2. (23)

The explicit forms of D1, D2, P1 and P2 are given in Table 3. The matrix Z := P1⊕P2 is such that
(cf. (22)):

Z−1(R−1D̃10R)Z = Z−1D̂10Z = D̂1⊕ D̂2 =:D10.
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Generator Rep. D1 Rep. D2

g2d
1
2

 −τ τ−1 −1
τ−1 −1 −τ

−1 −τ τ−1

 1
2

 −1 τ−1 τ

τ−1 −τ 1
τ 1 τ−1


g5d

1
2

 τ−1 −1 τ

1 τ τ−1
−τ τ−1 1

 1
2

 1−τ −τ −1
−τ 1 1−τ
1 τ−1 −τ


P1 =


0 1 0√
τ+2

5 0
√

3−τ
5

2τ−1√
5(τ+2)

0 1−2τ√
5(3−τ)

 P2 =


√

3−τ
5

2τ−1√
5(3−τ)

0
1−2τ√
5(3−τ)

√
3−τ

5 0
0 0 1


Table 3: Explicit forms of the representations D1 and D2 and the corresponding reducing matrices
P1,P2 ∈GL(3,R) (cf. (3))

By Schur’s Lemma, a matrix M ∈ Z(D10,R)∩S O(6) must be of the form

M = M(β) =



cos(β) 0 0 −sin(β) 0 0
0 1 0 0 0 0
0 0 1 0 0 0

sin(β) 0 0 cos(β) 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Combining these results, we obtain

Z(D̃10,R)∩S O(6) =
{
(RZ)M(β)(RZ)−1 : M(β) ∈ Z(D10,R)∩S O(6)

}
.

Hence, as in the tetrahedral case, the group Z(D̃10,R)∩S O(6) is isomorphic to S 1 and therefore
the Schur rotations associated with D10 are parameterised by an angle β ∈ S 1. As in the T -case,
in order to fix the boundary conditions of the transitions we consider the unique crystallographic
representation ĨD10 in B6 such that D̃10 = Ĩ∩ ĨD10 , whose explicit form is

ĨD10 =

〈


0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 −1


,



0 0 0 0 −1 0
0 0 −1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 −1 0 0
0 −1 0 0 0 0


〉
.

Let RD10(β) := MD10(β)R, where MD10(β) ∈ Z(D̃10,R)∩S O(6). We impose

RD10(β)−1ĨD10RD10(β) ' T1⊕T2. (24)

The corresponding system of equations (compare with (21)) has only one solution, namely β̂ =
π
2 . Hence any path βD10(t) : [0,1]→ S 1 connecting 0 with π

2 induces a Schur rotation as in (9)
given by MD10(β)◦βD10(t) = MD10(βD10(t)) : [0,1]→Z(D̃10,R)∩S O(6). In Figure 3 we show the
quasilattice corresponding to the intermediate state β = π

4 .

4.3 Dihedral groupD6

The dihedral group D6 is isomorphic to the symmetric group S 3 and is generated by two
elements g2d and g3 such that g2

2d = g3
3 = (g2g3)2 = e. Its character table is as follows (cf. [32]):
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Figure 3: Patch of a quasilattice with D10-symmetry, obtained from the Schur rotation associated
withD10 and corresponding to the intermediate state β = π

4 .

Irrep E 3C2 2C3
A1 1 1 1
A2 1 -1 1
E 2 0 -1

In order to compute the Schur rotations associated withD6, we proceed in complete analogy with
D10. Indeed, let D̃6 be the representation ofD6 as a subgroup of Ĩ given by

D̃6 =

〈


0 0 0 0 0 −1
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
−1 0 0 0 0 0


,



0 0 0 0 0 1
0 0 0 1 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0


〉
.

The matrix R, given by (4), reduces this representation as

D̂6 := R−1D̃6R = S 1⊕S 2, (25)

where S 1 and S 2 are representations of D6 that are reducible. Specifically, they both split into
A2⊕E in GL(3,R), and therefore are equivalent in GL(3,R). Using the projection operators given
in [35], we identify two matrices R1 and R2 in GL(3,R) that reduce into the same irreps S 1 and
S 2, i.e.

R−1
1 S 1R1 = R−1

2 S 2R2 ' A2⊕E. (26)

The explicit forms of such matrices are given in Table 4. Let V be the matrix in GL(6,R) given by
V := R1⊕R2. We have

D6 := V−1D̂6V ' A2⊕E⊕A2⊕E.

Schur’s Lemma forces a matrix P ∈ Z(D6,R)∩S O(6) to have the form

P = P(α,β) =



cos(α) 0 0 −sin(α) 0 0
0 cos(β) 0 0 −sin(β) 0
0 0 cos(β) 0 0 −sin(β)

sin(α) 0 0 cos(α) 0 0
0 sin(β) 0 0 cos(β) 0
0 0 sin(β) 0 0 cos(β)


,

where (α,β) ∈ S 1×S 1. Hence

Z(D̃6,R)∩S O(6) =
{
(RV)P(α,β)(RV)−1 : P(α,β) ∈ Z(D6,R)∩S O(6)

}
.
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Generator Rep. S 1 Rep. S 2

g2
1
2

 −τ τ−1 −1
τ−1 −1 −τ

−1 −τ τ−1

 1
2

 −1 τ−1 τ

τ−1 −τ 1
τ 1 τ−1


g3

1
2

 τ τ−1 1
1−τ −1 τ

1 −τ 1−τ

 1
2

 −1 1−τ −τ

τ−1 τ −1
τ −1 1−τ


R1 = 1√

3


τ 0 1−τ
0

√
3 0

τ−1 0 τ

 R2 = 1√
3

 0
√

3 0
τ 0 1−τ

1−τ 0 −τ


Table 4: Explicit forms of the representations S 1 and S 2 and the corresponding reducing matrices
R1 and R2 ∈GL(3,R) (cf. (4))

Therefore, contrary to the other maximal subgroups of I, the Schur rotations associated with D6
are parameterised by two angles belonging to a two-dimensional torus T2 ' S 1 × S 1. In other
words, the less symmetry is preserved during the transition, the more the physical and orthogonal
space are free to rotate. As before, to fix the boundary conditions, we consider the representation
ĨD6 such that D̃6 = Ĩ∩ ĨD6 :

ĨD6 =

〈


0 0 −1 0 0 0
0 0 0 0 0 −1
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 −1 0 0 0 0


,



0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 0 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0


〉
.

Let RD6(α,β) := MD6(α,β)R, where MD6(α,β) ∈ Z(D̃6,R)∩S O(6). We impose

RD6(α,β)−1ĨD6RD6(α,β) ' T1⊕T2,

and solve for α and β. There are 8 distinct solutions (α̂, β̂) given by

(α̂, β̂) ∈
{(

arctan
(

1
2

)
,arctan(2)

)
,
(
arctan(2),π− arctan

(
1
2

))
,
(
arctan

(
1
2

)
,arctan(2)−π

)
,(

−arctan(2),−arctan
(

1
2

))
,
(
arctan

(
1
2

)
−π,arctan(2)−π

)
,
(
π− arctan(2),−arctan

(
1
2

))
,(

arctan
(

1
2

)
−π,arctan(2)

)
,
(
π− arctan(2),π− arctan

(
1
2

))}
=: SD6 .

Any path γ(t) : [0,1] → T2 connecting (0,0) with any (α̂, β̂) ∈ SD6 defines a Schur rotation
MD6(t) := MD6(α,β)◦γ(t) : [0,1]→Z(D̃6,R)∩S O(6).

Continuous transformation of an icosahedron into a hexagonal prism. Let us consider the
path γ : [0,1]→T2 given by γ(t) = (tα̂, tβ̂), connecting (0,0) with the point (α̂, β̂) =

(
arctan

(
1
2

)
,arctan(2)

)
∈

SD6 , and let MD6(t) be the corresponding Schur rotation. We consider the point sets C0 given by
the projection into E‖ of the orbit under Ĩ of the lattice point e1 = (1,0,0,0,0,0):

C0 := π‖
(
O
Ĩ

(e1)
)

=
{
π‖(Ae1) : A ∈ Ĩ

}
.

The points of C0 constitute the vertices of an icosahedron (see Figure 4 (a)). The Schur rotation
MD6(t) induces a continuous transformation of C0 via the corresponding projection operators π‖t ;
in particular, we consider the family of finite point set Ct as in (14). In Figure 4 we plot these
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Figure 4: Example of a structural transition with D6-symmetry of an icosahedral point array. (a)
Initial configuration for t = 0, corresponding to the vertices of an icosahedron. (b) Resulting array
for t = 0.25. (c) The intermediate point set (t = 0.5), forming the vertices of a hexagonal prism.
(d) Transformed array for t = 0.75. (e) Final state of the transition (t = 1): the point set forms the
vertices of an icosahedron, albeit different from the initial one. The dashed red line corresponds
to a three-fold axis of the arrays that is fixed during the entire transition. The lines indicate the
relative positions of the icosahedral vertices during the transition.

Figure 5: The three-dimensional lattice obtained from the transition analysed in Figure 4 and
corresponding to the intermediate state t = 0.5.

point sets for t = 0, 0.25, 0.5, 0.75 and 1: we notice that the icosahedron (t = 0) is continuously
transformed into a hexagonal prism (t = 0.5), and the array for t = 1 forms the vertices of an
icosahedron, that is distinct from the initial one. The three-fold axis highlighted is fixed during
the transition, and the point sets Ct are invariant under the action of the representation S 1 ofD6 as
in the decomposition (25). In analogy to the case of the tetrahedral transition, the corresponding
model set for t = 0.5 defines a lattice in E‖ (see Figure 5).
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5 Conclusions

In this paper we characterised structural transitions of icosahedral structures (both infinite and
finite) in a group theoretical framework. We generalised the Schur rotation method, proposed
in [23, 24], for transitions with G-symmetry, where G is a maximal subgroup of the icosahedral
group. This allowed for the identification of the order parameters of the transitions, which corre-
spond to the possible angle(s) of rotation of the physical and orthogonal spaces that are embedded
into the higher dimensional space. In this paper, we have considered embeddings into 6D, which
corresponds to the minimal embedding dimension in which the icosahedral group is crystallo-
graphic. For this case, we have characterised transitions exhaustively here. However, there is the
possibility to embed the symmetry groups into even higher dimensions, which would open up ad-
ditional degrees of freedom. This could be important for those transitions which in 3D projection
result in sigularities as lattice vectors in projection collapse upon each other during the transition.
An example are the two opposing vertices of the symmetry axis defining D10 symmetry, which
would meet at the origins during the D10-preserving transition identified here. The additional
degrees of freedom could be used to construct transition paths avoiding this.

With the mathematical formalism developed here, we were able to easily prove the relation
between our approach and the Bain strain method in [27]. Moreover, based on the subgroup
structure analysis carried out in [22], we classified the boundary conditions of the transitions,
which correspond to angles of a k-dimensional torus, and provided specific examples of such
transitions for icosahedral model sets and point arrays.

This work paves the way for a dynamical analysis of such transitions. In particular, Ginzburg-
Landau energy functions can be formulated, which depend on the order parameters of the transition
and account for the symmetry breaking of the system, in line with previous models [19]. The
symmetry arguments developed here should give a better understanding of the energy landscapes,
with (local) minima corresponding to phases with higher symmetry, and possibly of the transition
pathways between them, which can be identified as paths on a torus connecting two icosahedral
boundaries.

As mentioned in the Introduction, icosahedral finite point sets play an important role in the
modeling of material boundaries of viral capsids. A complete theoretical framework of conforma-
tional changes of viral capsids is still lacking; previous work [28] analysed such structural transfor-
mations with the Bain strain approach, by embedding the point arrays constituting the blueprints
for the capsid into six-dimensional lattices and then considering possible transformations of these
higher dimensional point sets. In a similar way, the results developed here can provide new in-
sights into the dynamics of conformational changes in viruses, and a better understanding of their
maturation processes. Finally, point arrays with icosahedral symmetry have been used in the mod-
eling of fullerenes and carbon onions [36, 37], and therefore, the new mathematical models are
likely to have wider applications in science.
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