233 research outputs found
On the form of growing strings
Patterns and forms adopted by Nature, such as the shape of living cells, the
geometry of shells and the branched structure of plants, are often the result
of simple dynamical paradigms. Here we show that a growing self-interacting
string attached to a tracking origin, modeled to resemble nascent polypeptides
in vivo, develops helical structures which are more pronounced at the growing
end. We also show that the dynamic growth ensemble shares several features of
an equilibrium ensemble in which the growing end of the polymer is under an
effective stretching force. A statistical analysis of native states of proteins
shows that the signature of this non-equilibrium phenomenon has been fixed by
evolution at the C-terminus, the growing end of a nascent protein. These
findings suggest that a generic non-equilibrium growth process might have
provided an additional evolutionary advantage for nascent proteins by favoring
the preferential selection of helical structures.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let
Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions
Systems described by an O(n) symmetrical Hamiltonian are considered
in a -dimensional film geometry at their bulk critical points. A detailed
renormalization-group (RG) study of the critical Casimir forces induced between
the film's boundary planes by thermal fluctuations is presented for the case
where the O(n) symmetry remains unbroken by the surfaces. The boundary planes
are assumed to cause short-ranged disturbances of the interactions that can be
modelled by standard surface contributions corresponding
to subcritical or critical enhancement of the surface interactions. This
translates into mesoscopic boundary conditions of the generic
symmetry-preserving Robin type .
RG-improved perturbation theory and Abel-Plana techniques are used to compute
the -dependent part of the reduced excess free energy per
film area to two-loop order. When , it takes the scaling
form as
, where are scaling fields associated with the
surface-enhancement variables , while is a standard
surface crossover exponent. The scaling function
and its analogue for the Casimir force
are determined via expansion in and extrapolated to
dimensions. In the special case , the expansion
becomes fractional. Consistency with the known fractional expansions of D(0,0)
and to order is achieved by appropriate
reorganisation of RG-improved perturbation theory. For appropriate choices of
and , the Casimir forces can have either sign. Furthermore,
crossovers from attraction to repulsion and vice versa may occur as
increases.Comment: Latex source file, 40 pages, 9 figure
Lack of self-averaging in neutral evolution of proteins
We simulate neutral evolution of proteins imposing conservation of the
thermodynamic stability of the native state in the framework of an effective
model of folding thermodynamics. This procedure generates evolutionary
trajectories in sequence space which share two universal features for all of
the examined proteins. First, the number of neutral mutations fluctuates
broadly from one sequence to another, leading to a non-Poissonian substitution
process. Second, the number of neutral mutations displays strong correlations
along the trajectory, thus causing the breakdown of self-averaging of the
resulting evolutionary substitution process.Comment: 4 pages, 2 figure
In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells
α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
Disordered Flat Phase and Phase Diagram for Restricted Solid on Solid Models of Fcc(110) Surfaces
We discuss the results of a study of restricted solid-on-solid models for fcc
(110) surfaces. These models are simple modifications of the exactly solvable
BCSOS model, and are able to describe a missing-row reconstructed
surface as well as an unreconstructed surface. They are studied in two
different ways. The first is by mapping the problem onto a quantum spin-1/2
one-dimensional hamiltonian of the Heisenberg type, with competing
couplings. The second is by standard Monte Carlo simulations. We find phase
diagrams with the following features, which we believe to be quite generic: (i)
two flat, ordered phases (unreconstructed and missing-row reconstructed); a
rough, disordered phase; an intermediate disordered flat (DF) phase,
characterized by monoatomic steps, whose physics is shown to be akin to that of
a dimer spin state. (ii) a transition line from the reconstructed
phase to the DF phase showing exponents which appear to be close, within our
numerical accuracy, to the 2D-Ising universality class. (iii) a critical
(preroughening) line with variable exponents, separating the unreconstructed
phase from the DF phase. Possible signatures and order parameters of the DF
phase are investigated.Comment: Revtex (22 pages) + 15 figures (uuencoded file
Modeling study on the validity of a possibly simplified representation of proteins
The folding characteristics of sequences reduced with a possibly simplified
representation of five types of residues are shown to be similar to their
original ones with the natural set of residues (20 types or 20 letters). The
reduced sequences have a good foldability and fold to the same native structure
of their optimized original ones. A large ground state gap for the native
structure shows the thermodynamic stability of the reduced sequences. The
general validity of such a five-letter reduction is further studied via the
correlation between the reduced sequences and the original ones. As a
comparison, a reduction with two letters is found not to reproduce the native
structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure
Metastability of native proteins and the phenomenon of amyloid formation
An experimental determination of the thermodynamic stabilities of a series of amyloid fibrils reveals that this structural form is likely to be the most stable one that protein molecules can adopt even under physiological conditions. This result challenges the conventional assumption that functional forms of proteins correspond to the global minima in their free energy surfaces and suggests that living systems are conformationally as well as chemically metastable. © 2011 American Chemical Society
Nucleation phenomena in protein folding: The modulating role of protein sequence
For the vast majority of naturally occurring, small, single domain proteins
folding is often described as a two-state process that lacks detectable
intermediates. This observation has often been rationalized on the basis of a
nucleation mechanism for protein folding whose basic premise is the idea that
after completion of a specific set of contacts forming the so-called folding
nucleus the native state is achieved promptly. Here we propose a methodology to
identify folding nuclei in small lattice polymers and apply it to the study of
protein molecules with chain length N=48. To investigate the extent to which
protein topology is a robust determinant of the nucleation mechanism we compare
the nucleation scenario of a native-centric model with that of a sequence
specific model sharing the same native fold. To evaluate the impact of the
sequence's finner details in the nucleation mechanism we consider the folding
of two non- homologous sequences. We conclude that in a sequence-specific model
the folding nucleus is, to some extent, formed by the most stable contacts in
the protein and that the less stable linkages in the folding nucleus are solely
determined by the fold's topology. We have also found that independently of
protein sequence the folding nucleus performs the same `topological' function.
This unifying feature of the nucleation mechanism results from the residues
forming the folding nucleus being distributed along the protein chain in a
similar and well-defined manner that is determined by the fold's topological
features.Comment: 10 Figures. J. Physics: Condensed Matter (to appear
- …