9,530 research outputs found

    Chemodynamic subpopulations of the Carina dwarf galaxy

    Get PDF
    We study the chemodynamical properties of the Carina dwarf spheroidal by combining an intermediate spectroscopic resolution dataset of more than 900 red giant and red clump stars, with high-precision photometry to derive the atmospheric parameters, metallicities and age estimates for our targets. Within the red giant branch population, we find evidence for the presence of three distinct stellar sub-populations with different metallicities, spatial distributions, kinematics and ages. As in the Fornax and Sculptor dwarf spheroidals, the subpopulation with the lowest average metallicity is more extended and kinematically hotter than all other populations. However, we identify an inversion in the parallel ordering of metallicity, kinematics and characteristic length scale in the two most metal rich subpopulations, which therefore do not contribute to a global negative chemical gradient. Contrary to common trends in the chemical properties with radius, the metal richest population is more extended and mildly kinematically hotter than the main component of intermediate metallicity. More investigations are required to ascertain the nature of this inversion, but we comment on the mechanisms that might have caused it.Comment: 9 pages, 9 figures, accepted for publication in MNRA

    Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems

    Get PDF
    We study quantum systems with even numbers N of levels that are completely state-controlled by unitary transformations generated by Lie algebras isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than the respective su(N) with dimension N^2-1. We show that this reduction constrains the Hamiltonian to have symmetric energy levels. An example of such a system is an n-qubit system. Using a geometric representation for the quantum wave function of a finite system, we present an explicit example that shows a two-qubit system can be controlled by the elements of the Lie algebra sp(4) (isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with dimension fifteen. These results enable one to envision more efficient algorithms for the design of fields for quantum-state engineering, and they provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure

    Which Way Germany?

    Get PDF

    Generalized coherent states are unique Bell states of quantum systems with Lie group symmetries

    Full text link
    We consider quantum systems, whose dynamical symmetry groups are semisimple Lie groups, which can be split or decay into two subsystems of the same symmetry. We prove that the only states of such a system that factorize upon splitting are the generalized coherent states. Since Bell's inequality is never violated by the direct product state, when the system prepared in the generalized coherent state is split, no quantum correlations are created. Therefore, the generalized coherent states are the unique Bell states, i.e., the pure quantum states preserving the fundamental classical property of satisfying Bell's inequality upon splitting.Comment: 4 pages, REVTeX, amssymb style. More information on http://www.technion.ac.il/~brif/science.htm

    CP violation in gauge theories

    Get PDF
    We define the CP transformation properties of scalars, fermions and vectors in a gauge theory and show that only three types of interactions can lead to CP violation: scalar interactions, fermion-scalar interactions and FF~ F \tilde F associated with the strong CP problem and which involve only the gauge fields. For technicolor theories this implies the absence of CP violation within perturbation theory.Comment: 5 pages, 1 figure, revtex and epsf require

    Aharonov-Bohm effect and broken valley-degeneracy in graphene rings

    Full text link
    We analyze theoretically the electronic properties of Aharonov-Bohm rings made of graphene. We show that the combined effect of the ring confinement and applied magnetic flux offers a controllable way to lift the orbital degeneracy originating from the two valleys, even in the absence of intervalley scattering. The phenomenon has observable consequences on the persistent current circulating around the closed graphene ring, as well as on the ring conductance. We explicitly confirm this prediction analytically for a circular ring with a smooth boundary modelled by a space-dependent mass term in the Dirac equation. This model describes rings with zero or weak intervalley scattering so that the valley isospin is a good quantum number. The tunable breaking of the valley degeneracy by the flux allows for the controlled manipulation of valley isospins. We compare our analytical model to another type of ring with strong intervalley scattering. For the latter case, we study a ring of hexagonal form with lattice-terminated zigzag edges numerically. We find for the hexagonal ring that the orbital degeneracy can still be controlled via the flux, similar to the ring with the mass confinement.Comment: 7 pages, 7 figures, replaced with considerably extended new versio

    Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    Full text link
    We report on a study of the long-term stability and absolute accuracy of an atom interferometer gyroscope. This study included the implementation of an electro-optical technique to reverse the vector area of the interferometer for reduced systematics and a careful study of systematic phase shifts. Our data strongly suggests that drifts less than 96 μ\mudeg/hr are possible after empirically removing shifts due to measured changes in temperature, laser intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR
    • …
    corecore