32 research outputs found

    Integrability of central extensions of the Poisson Lie algebra via prequantization

    No full text
    We present a geometric construction of central S^1-extensions of the quantomorphism group of a prequantizable, compact, symplectic manifold, and explicitly describe the corresponding lattice of integrable cocycles on the Poisson Lie algebra. We use this to find nontrivial central S^1-extensions of the universal cover of the group of Hamiltonian diffeomorphisms. In the process, we obtain central S^1-extensions of Lie groups that act by exact strict contact transformations

    Geodesic Equations on Diffeomorphism Groups

    No full text
    We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics

    Generalized Euler-Poincar\'e equations on Lie groups and homogeneous spaces, orbit invariants and applications

    Full text link
    We develop the necessary tools, including a notion of logarithmic derivative for curves in homogeneous spaces, for deriving a general class of equations including Euler-Poincar\'e equations on Lie groups and homogeneous spaces. Orbit invariants play an important role in this context and we use these invariants to prove global existence and uniqueness results for a class of PDE. This class includes Euler-Poincar\'e equations that have not yet been considered in the literature as well as integrable equations like Camassa-Holm, Degasperis-Procesi, μ\muCH and μ\muDP equations, and the geodesic equations with respect to right invariant Sobolev metrics on the group of diffeomorphisms of the circle

    Vlasov moment flows and geodesics on the Jacobi group

    Full text link
    By using the moment algebra of the Vlasov kinetic equation, we characterize the integrable Bloch-Iserles system on symmetric matrices (arXiv:math-ph/0512093) as a geodesic flow on the Jacobi group. We analyze the corresponding Lie-Poisson structure by presenting a momentum map, which both untangles the bracket structure and produces particle-type solutions that are inherited from the Vlasov-like interpretation. Moreover, we show how the Vlasov moments associated to Bloch-Iserles dynamics correspond to particular subgroup inclusions into a group central extension (first discovered in arXiv:math/0410100), which in turn underlies Vlasov kinetic theory. In the most general case of Bloch-Iserles dynamics, a generalization of the Jacobi group also emerges naturally.Comment: 45 page

    Central extensions of groups of sections

    Full text link
    If q : P -> M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra k of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact forms. In the present paper we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context we provide sufficient conditions for integrability in terms of data related only to the group K.Comment: 54 pages, revised version, to appear in Ann. Glob. Anal. Geo

    The Dynamics of a Rigid Body in Potential Flow with Circulation

    Get PDF
    We consider the motion of a two-dimensional body of arbitrary shape in a planar irrotational, incompressible fluid with a given amount of circulation around the body. We derive the equations of motion for this system by performing symplectic reduction with respect to the group of volume-preserving diffeomorphisms and obtain the relevant Poisson structures after a further Poisson reduction with respect to the group of translations and rotations. In this way, we recover the equations of motion given for this system by Chaplygin and Lamb, and we give a geometric interpretation for the Kutta-Zhukowski force as a curvature-related effect. In addition, we show that the motion of a rigid body with circulation can be understood as a geodesic flow on a central extension of the special Euclidian group SE(2), and we relate the cocycle in the description of this central extension to a certain curvature tensor.Comment: 28 pages, 2 figures; v2: typos correcte

    Shifted Symplectic Structures

    Get PDF
    This is the first of a series of papers about \emph{quantization} in the context of \emph{derived algebraic geometry}. In this first part, we introduce the notion of \emph{nn-shifted symplectic structures}, a generalization of the notion of symplectic structures on smooth varieties and schemes, meaningful in the setting of derived Artin n-stacks. We prove that classifying stacks of reductive groups, as well as the derived stack of perfect complexes, carry canonical 2-shifted symplectic structures. Our main existence theorem states that for any derived Artin stack FF equipped with an nn-shifted symplectic structure, the derived mapping stack Map(X,F)\textbf{Map}(X,F) is equipped with a canonical (nd)(n-d)-shifted symplectic structure as soon a XX satisfies a Calabi-Yau condition in dimension dd. These two results imply the existence of many examples of derived moduli stacks equipped with nn-shifted symplectic structures, such as the derived moduli of perfect complexes on Calabi-Yau varieties, or the derived moduli stack of perfect complexes of local systems on a compact and oriented topological manifold. We also show that Lagrangian intersections carry canonical (-1)-shifted symplectic structures.Comment: 52 pages. To appear in Publ. Math. IHE

    Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups

    No full text
    We formulate Euler-Poincar____'e equations on the Lie group Aut(P) of automorphisms of a principal bundle P. The corresponding flows are referred to as EPAut flows. We mainly focus on geodesic flows associated to Lagrangians of Kaluza-Klein type. In the special case of a trivial bundle P, we identify geodesics on certain infinite-dimensional semidirect-product Lie groups that emerge naturally from the construction. This approach leads naturally to a dual pair structure containing ____delta-like momentum map solutions that extend previous results on geodesic flows on the diffeomorphism group (EPDiff). In the second part, we consider incompressible flows on the Lie group of volume-preserving automorphisms of a principal bundle. In this context, the dual pair construction requires the definition of chromomorphism groups, i.e. suitable Lie group extensions generalizing the quantomorphism group
    corecore