33,266 research outputs found

    Towards a Base UML Profile for Architecture Description

    Get PDF
    This paper discusses a base UML profile for architecture description as supported by existing Architecture Description Languages (ADLs). The profile may be extended so as to enable architecture modeling both as expressed in conventional ADLs and according to existing runtime infrastructures (e.g., system based on middleware architectures).

    Origin of conductivity cross over in entangled multi-walled carbon nanotube network filled by iron

    Full text link
    A realistic transport model showing the interplay of the hopping transport between the outer shells of iron filled entangled multi-walled carbon nanotubes (MWNT) and the diffusive transport through the inner part of the tubes, as a function of the filling percentage, is developed. This model is based on low-temperature electrical resistivity and magneto-resistance (MR) measurements. The conductivity at low temperatures showed a crossover from Efros-Shklovski (E-S) variable range hopping (VRH) to Mott VRH in 3 dimensions (3D) between the neighboring tubes as the iron weight percentage is increased from 11% to 19% in the MWNTs. The MR in the hopping regime is strongly dependent on temperature as well as magnetic field and shows both positive and negative signs, which are discussed in terms of wave function shrinkage and quantum interference effects, respectively. A further increase of the iron percentage from 19% to 31% gives a conductivity crossover from Mott VRH to 3D weak localization (WL). This change is ascribed to the formation of long iron nanowires at the core of the nanotubes, which yields a long dephasing length (e.g. 30 nm) at the lowest measured temperature. Although the overall transport in this network is described by a 3D WL model, the weak temperature dependence of inelastic scattering length expressed as L_phi ~T^-0.3 suggests the possibility for the presence of one-dimensional channels in the network due to the formation of long Fe nanowires inside the tubes, which might introduce an alignment in the random structure.Comment: 29 pages,10 figures, 2 tables, submitted to Phys. Rev.

    Dynamics of horizontal-like maps in higher dimension

    Get PDF
    We study the regularity of the Green currents and of the equilibrium measure associated to a horizontal-like map in C^k, under a natural assumption on the dynamical degrees. We estimate the speed of convergence towards the Green currents, the decay of correlations for the equilibrium measure and the Lyapounov exponents. We show in particular that the equilibrium measure is hyperbolic. We also show that the Green currents are the unique invariant vertical and horizontal positive closed currents. The results apply, in particular, to Henon-like maps, to regular polynomial automorphisms of C^k and to their small pertubations.Comment: Dedicated to Professor Gennadi Henkin on the occasion of his 65th birthday, 37 pages, to appear in Advances in Mat

    Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    Full text link
    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2^{+2} counterions, is studied. Experimentally, it is known that MgSO4_4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2^{+2} multivalent counterions. As Mg+2^{+2} concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2^{+2} concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA−-DNA short range attraction energies, mediated by Mg+2^{+2}, is found to be −-0.004 kBTk_BT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in aggreement qualitatively with values for tri- and tetra-valent counterions.Comment: 17 pages, 4 figures, improved manuscript. Submitted to J. Chem. Phys (2010

    Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators

    Get PDF
    Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mechanical deformations couple. As the electrons in graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can be used for sensitive displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered as well as disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure

    User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 2: Appendixes A-K

    Get PDF
    The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure

    Third type of domain wall in soft magnetic nanostrips

    Full text link
    Magnetic domain walls (DWs) in nanostructures are low-dimensional objects that separate regions with uniform magnetisation. Since they can have different shapes and widths, DWs are an exciting playground for fundamental research, and became in the past years the subject of intense works, mainly focused on controlling, manipulating, and moving their internal magnetic configuration. In nanostrips with in-plane magnetisation, two DWs have been identified: in thin and narrow strips, transverse walls are energetically favored, while in thicker and wider strips vortex walls have lower energy. The associated phase diagram is now well established and often used to predict the low-energy magnetic configuration in a given magnetic nanostructure. However, besides the transverse and vortex walls, we find numerically that another type of wall exists in permalloy nanostrips. This third type of DW is characterised by a three-dimensional, flux closure micromagnetic structure with an unusual length and three internal degrees of freedom. Magnetic imaging on lithographically-patterned permalloy nanostrips confirms these predictions and shows that these DWs can be moved with an external magnetic field of about 1mT. An extended phase diagram describing the regions of stability of all known types of DWs in permalloy nanostrips is provided.Comment: 19 pages, 7 figure

    Political uncertainty and housing markets

    Get PDF
    This paper examines the causal effects of political uncertainty on housing markets. We used US gubernatorial elections from 1982 to 2018 as a source of exogenous variation in political uncertainty and exploited the regional variations in residential housing markets. We used neighboring states without elections and counties at the state borders without elections as control groups. We found that higher political uncertainty causes (a) a decrease in house price growth; (b) a decrease in the number of housing transactions; and (c) an increase in the number of building permits. These effects are stronger during election years when election outcomes present higher uncertainty. We further examined the impact of political uncertainty on mortgage markets and found that mortgage demand and supply decrease in election years
    • …
    corecore