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Nanomechanical displacement detection using coherent transport in graphene
nanoribbon resonators
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Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with
nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon
resonator, coherent electron transport and mechanical deformations couple. This coupling can be used for sensitive
displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered
as well as disordered ribbon systems of length L, a strain ε ∼ (w/L)2 due to a deflection w leads to a relative
change in conductance δG/G ∼ (w2/a0L), where a0 ≈ 1.4 Å.
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I. INTRODUCTION

Nanoelectromechanical (NEM) resonators1 hold promise
for technological implementations such as tunable rf filters2

and ultrasensitive mass sensing.3,4 NEMS are also of interest
in connection with fundamental studies of quantum properties
of macroscopic systems.5–7 Regardless of application area,
transduction mechanisms for system control and readout must
be implemented.8 The choice of transduction mechanism
depends, among other things, on device design and choice
of material.

Being only a single atomic layer thick, graphene consti-
tutes the ultimate material for two-dimensional NEMS, and
graphene NEMS have already been demonstrated.9–16 The
transduction schemes used so far have been optical,9,11,12

mechanical,10 and electric.13–16 Because electron transport
through mesoscopic graphene devices can be coherent,17–19

using graphene in NEMS means that phase coherent transport
phenomena can be directly integrated into NEM resonators.
As shown in this paper, this allows the motion of the NEMS
to couple to the length scale set by an intrinsic scale, the
interatomic distance a0 ≈ 1.4 Å.

So far graphene NEMS have operated in the diffusive trans-
port regime where electric transduction13–16 has been based on
charge carrier density modulation. In those experiments the
graphene was suspended above a backgate at distance d as
shown in Fig. 1(a). For a sheet of length L and width W the
capacitance to the gate can be estimated as CG ≈ ε0LW/d,
where ε0 is the vacuum permittivity.20,21 Hence the backgate
voltage VG induces a carrier density n0e = ε0VG/d. This leads
to a conductivity of σ = μeε0VG/d,22 where μe is the electron
mobility. Motion detection then uses the change in carrier
density with distance. For a deflection w away from the
equilibrium distance d, the relative change in conductivity
is δσ/σ ∼ w/d.23 Note that only geometric length scales (w
and d) enter into this expression.

A deflection w also induces strain ε ≈ (w/L)2, which
affects both the dynamical13,24 and the electronic25 properties.
For diffusive transport, strain leads to a linear increase in
resistance26 with a constant of proportionality of order unity.
Hence the relative change in conductivity due to strain,
δσstrain/σ ∼ (w/L)2, is typically negligible compared to that
from the carrier density modulation. For ballistic transport in
wide sheets, similar conclusions hold (see Ref. 23).

The situation is different if one considers coherent transport
in graphene nanoribbons. The transverse confinement then
gives rise to conductance quantization.27,28 On a plateau of
constant conductance, this prevents changes of conductivity
due to motion in the backgate electrostatic field, leaving
strain as the dominant coupling between deformation and
conductance. Recently, conductance quantization in ballistic
suspended graphene samples was demonstrated.29 In this
paper it is shown that in graphene nanoribbon NEM devices,
an operating point where σ changes with displacement as
δσ/σ = δσstrain/σ ∼ (w2/a0L) can be found. For armchair
nanoribbons [Fig. 1(b)], this is due to the opening of the
transport gap. For zigzag nanoribbons, which has no trans-
port gap, an interferometer-type setup [Fig. 1(c)] can be
used. This setup can also be used in the presence of edge
disorder.

Typically, graphene NEMS in equilibrium is not under
zero strain. Not only will this inhibit ripple formation, it
will also lead to more linear mechanical response. This
strain is typically due to built-in strain or to biasing to
a working point w0. For the cases studied here, it is
shown that biasing to the working point will not create
any appreciable strain and only built-in strain needs to be
considered.

Transport through suspended graphene sheets and ribbons
and in graphene with strained regions has been studied
previously by several researchers,30–33 as well as in carbon
nanotubes.34,35 The prospects of using strain in a controlled
way to influence electronic properties is currently an active
research field. Here the focus is on displacement detection in
graphene nanoribbon NEMS.

This paper is organized as follows: In Sec. II the
tight binding model for uniaxially strained graphene is
briefly reviewed. Then, in Sec. III the sensitivity to de-
flections of an armchair nanoribbon [Fig. 1(b)] is consid-
ered, while Sec. IV treats the interferometric setup using
zigzag nanoribbons [Fig. 1(c)]. Conclusions are found in
Sec. V.

II. TIGHT BINDING DESCRIPTION

The electronic properties close to the charge neutrality point
are to a first approximation well described by the nearest
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FIG. 1. (Color online) Suspended graphene NEM systems.
(a) Graphene sheet of length L and width W suspended in the xy plane
above a backgate. (b) Single suspended nanoribbon. For armchair
nanoribbons, the strain induces a transport gap which can be used for
displacement detection. (c) Graphene nanoribbon interferometer for
displacement detection using zigzag nanoribbons.

neighbor tight binding model. Suppressing spin indices it
is

H = −
∑
n,δi

[
tnδi

a†
nbnδi

+ h.c.
] +

∑
m

[
V (a)

m n(a)
m + V (b)

m n
(b)
mδ1

]
.

(1)

Here a
†
n is the creation operator for an electron at the

point Rn = (n1a1 + n2a2) and bnδi
the destruction operator

for electrons at the site Rn + δi . The basis is here: a1 =
a0(3/2,

√
3/2), a2 = a0(3/2, − √

3/2), δ1 = a0(1/2,
√

3/2),
δ2 = a0(1/2, − √

3/2), and δ3 = a0(−1,0). For unstrained
graphene, tnδ = t0 ≈ 2.7 eV, and the Fermi velocity is h̄vF =
3t0a0/2.

For uniform strain ε along the x direction (armchair edge),
the bond lengths change from a0 to

|δ1| = |δ2| = a0[1 + 0.25ε(1 − 3σp)],

|δ3| = a0[1 + ε], (armchair)

while for uniform strain in the y direction (zigzag edge),

|δ1| = |δ2| = a0[1 + 0.25ε(3 − σp)]

|δ3| = a0[1 − εσp]. (zigzag)

Here σp ≈ 0.1 is the Poisson ratio.
The changed lengths alter the hopping energies as tnδi

=
t0(1 + �i). Typically, ε � 1 and it suffices to work to first
order in ε. Then �i ∝ ε and only first-order terms in �i need to
be kept. The spectrum then remains gapless and linear and can,
for uniform strain, be described by the low-energy Hamiltonian
H = HD + V , where

HD = h̄vF

[
�̂ · (−i∇ + k0) 0
0 �̂∗ · (−i∇ − k0)

]
.

(2)

Here �̂ is a modified σ̂ matrix defined as

�̂ ≡ v−1
F

[
0 v
v∗ 0

]
= v−1

F

[
0 vxx̂ + vyŷ

v∗
x x̂ + v∗

y ŷ 0

]
, (3)

where

h̄vx = 3t0a0

2

[
1 + �1 + �2 + 4�3

6
− i

√
3

3

�1 − �2

2

]
,

h̄vy = 3t0a0

2

[
�1 − �2

2
√

3
− i

(
1 + �1 + �2

2

)]
,

k0 = 1

3a0
(
√

3[�2 − �1],�1 + �2 − 2�3).

Hence the Fermi velocity changes and becomes anisotropic,
and the locations of the Fermi points in wave-vector space
changes.

The �i values depend on the direction the strain is applied
in and must be determined from first principles. In the context
of carbon nanotubes, this has been studied extensively,36–38

mainly using tight-binding Hückel theory or Koster-Slater
calculations.39 More recently, density functional theory has
been applied to strained graphene.40,41 Here, the model of
Ribeiro et al.41 is used, where tδi

= t0 exp[−βi(δi/a0 − 1)].
For strain along the x direction (armchair) β1 = β2 = 2.6

and β3 = 3.3,41 and to lowest order in ε one finds

�̂ = (1 − 2.35ε)σxx̂ + (1 − 0.46ε)σyŷ, (4)

k0 = 2

3a0
2.84εŷ. (armchair) (5)

Here σx,y are the conventional Pauli spin-1/2 matrices. For
strain along the y direction (zigzag), β1 = β2 = 3.15 and β3 =
4,41 which gives

�̂ = (1 − 0.74ε)σxx̂ + (1 − 2.30ε)σyŷ, (6)

k0 = − 2

3a0
2.70εŷ. (zigzag) (7)

III. SUSPENDED ARMCHAIR RIBBON

Consider now the ideal situation with a perfect metallic
armchair graphene nanoribbon of length L and width W ,
suspended above a backgate a distance d0 as shown in Fig. 1(b).
The supported parts (regions I and III) are assumed to be
unstrained, while the suspended part (region II) is under under
finite strain ε > 0. For concreteness, consider the situation
shown in Fig. 2. There it is assumed that the undeflected
(w = 0) ribbon has a built-in strain ε0 and an approximately
uniform gate-induced charge density ρ0.

The conductance through the ribbon in the linear response
regime is proportional to the transmission function T (E)
as G = 2(e/h2)T (E), where the prefactor 2 accounts for
spin. Confinement in the y direction leads to quantization
of transverse wave-vector components, and if the ribbon
were unable to deflect and was initially unstrained (ε0 = 0)
the transmission T (E) would show a steplike behavior with
increasing E (see blue squares in Fig. 3).

The energy E can be controlled by the backgate which
also changes the carrier density. For a narrow ribbon with
W/d � 1 connected to a reservoir with chemical potential μ,
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FIG. 2. Side view of suspended nanoribbon. In the text, a system
where the ribbon is initially undeflected and has a finite induced 1D
charge density ρ0 and a built-in uniaxial strain ε0. A deflection of
magnitude w will induce an additional strain δ(w) ∼ w2/L2 as well
as modify the charge distribution in the ribbon to ρ = ρ0 + δρ(x).

one finds (see Appendix A), to leading order in d/W , that the
correspondingly induced charge density is

ρ ≈ β
μ

1 + α ln 8d
W

, (8)

with α ≡ e2/(3π2t0a0ε0) ≈ 1.6 and β = 4e/(3πt0a0). Note
that ε0 denotes the vacuum permittivity while the symbol ε0

denotes initial strain.
In what follows we will be mainly interested in one-

dimensional (1D) charge densities ρ such that only the
lowest transverse subband is occupied. This implies that the
maximum 1D charge density is of the order ρ � e/W . If the
ribbon is suspended, changing the charge density (bias voltage)
may cause the ribbon to deflect.
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FIG. 3. (Color online) Transmission probability T through the
metallic armchair ribbon (W = 17 nm, L = 28 nm) [see Fig. 1(b)] as
a function of E and ε. The solid lines follow from the long wavelength
approximation [Eq. (12)] for the strains ε = 0.0% (blue squares),
0.2% (red circles), 0.5% (green triangles), and 1.0% (black stars).
The discrete symbols were obtained using numerical tight-binding
calculations. The thin dashed line corresponds to making the
calculation in the absence of the deformation potential.

To see that one can tune ρ using the backgate without
significantly affecting the deflection w of the ribbon, which is
what one wishes to measure, consider the pressure induced on
the ribbon. Using relation (8) one finds that for ρ = ρmax =
e/W a maximum pressure of Pz = e2/(8πε0W

3d). Hence
by choosing a large backgate distance d (or using a side
gate to control ρ), this force can be made arbitrarily small
while allowing the backgate to tune the charge density in the
interval 0 < |ρ| < e/W . An example calculation explicitly
demonstrating this is found in Appendix B.

Note here that it is this weak dependence of the pressure Pz

on the deflection w of the ribbon which allows one to assume
that the strain in the ribbon will remain uniform throughout
the ribbon at all times.

To calculate T (E), the transverse momentum is divided
into wave-vector components qn = 2π/3

√
3a0 + nπ/W + k0

for integer n. Here k0 is given by Eq. (5). If the interfaces
between strained and unstrained regions are along the y

direction, transverse mode number n will be conserved. Hence
T = ∑

n Tn and the problem reduces to solving the 1D Dirac
equation. Rescaling by setting ξ = x/a0 yields

[−i
√

�x(ξ )∂ξ

√
�x(ξ ) + �ya0qn + v(ξ )]ψn(ξ ) = Eψn(ξ ).

(9)

Here E = Ea0/(h̄vF ) ≈ E/(4.0 eV), and v(ξ ) is the effective
(dimensionless) potential in the ribbon.

The effective potential has one contribution φBG(x,w) from
the applied backgate field and one contribution φD from
the deformation potential.42,43 Recent ab initio calculations44

suggest that the contribution to the effective potential from
the deformation potential is approximately φD = g0ε, with
g0 ≈ 3 eV.

An expression for the effective potential from the backgate
is derived in Appendix A for the lowest transverse subband. If
one assumes an adiabatic approximation along the ribbon, the
resulting effective potential is

φBG ≈ μ

1 + α ln 8d(x)
W

≈ φ0
BG

(
1 +

[
w(x)

d0

]
α

1 + α ln 8d0
W

)
= φ0

BG + δφBG(x).

(10)

The correction to φ0
BG is proportional to w and hence to√

ε. However, for realistic geometries (or if a side gate
is used) the prefactor is so small that this term can be
omitted and we can take φBG(x) = φ0

BG for large d. The
constant φBG can be incorporated in E and we are left
with a uniform strain-dependent scalar deformation potential
v = g0a0/(h̄vF )ε ≈ 0.74ε in the suspended part of the ribbon
(region II) and zero potential in regions I and III [see Fig. 1(b)].

To calculate T Eq. (9) should be solved in the regions I,
II, and III [see Fig. 1(b)] and the solutions matched at the
interfaces (see also Ref. 45). In a region of constant v and
uniform ε, the solution with energy E in band n is

ψn(x) = Ane
ikx

(
1

eiθn(k)

)
+ Bne

−ikx

(
1

−e−iθn(k)

)
, (11)

where exp[iθn(k)] = k+iqn

E−v
and k = +√

(E − v)2 − q2
n .
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The matching of wave functions between regions is
determined by current conservation.46 The current operator
corresponding to the Hamiltonian in Eq. (9) is Ĵx = 2vF �xσx .
Consequently, at the interface between regions I and II,√

�I
xψ

I
n = √

�II
x ψII

n . However, the factors
√

�x cancel in
the final expression for Tn:

Tn(E) =
(

1 + sin2 φn

[
sin θnI − sin θnII

cos θnI cos θnII

]2)−1

. (12)

Here φn ≡ kIIL, while θn(I,II ) are the propagation angles for
electrons in regions I and II.

In Fig. 3, T is shown for strains ε = 0.0 − 1.0% as the
solid lines. The dashed lines correspond to solving the same
problem but omitting the deformation potential. The discrete
symbols were obtained numerically using the tight-binding
Hamiltonian in Eq. (1) with an added deformation potential
using the relation T = Tr[�LGr

C�RGa
c ]. Here G

r,(a)
C are the

retarded (advanced) Green’s functions for the ribbon, and �L,R

are self-energies accounting for semi-infinite graphene leads.
Also, in the numerical calculation no linearization in strain has
been made. As can be seen, for the lowest plateau a transport
gap opens up with increasing strain.

From Eq. (12) the sensitivity of the conductance G ∝ T

to ribbon displacements w can be obtained. For the lowest
transverse mode q = 0 and for vI,II = 0 one finds

T0(E) = (E − v)2 − a2
0k

2
0

(E − v)2 − a2
0k

2
0 cos2 L/a0

√
(E − v)2 − k2

0a
2
0

. (13)

This dependence of T on ε is shown in Fig. 4. Different
curves correspond to different backgate bias points, i.e.,
different values of E = 0.0,0.3,... eV. From this figure it is
clear how for a given strain one may chose a working point E0

(by gating the structure) such that the slope of the T (ε) curve
is maximal. This maximal slope |∂T /∂ε|max then defines the
sensitivity.

The smallest sensitivity is obtained for the working point
at E = 0 [dashed-dotted line in Fig. 4]. A lower bound for
the sensitivity can be found by setting E = 0 in Eq. (13) and
solving for the maximum magnitude of the slope. This gives
|∂T /∂ε|max ≈ 2(L/a0). Hence for a deflection of magnitude
w, the relative change in conductance is δG/G = δT /T ∼
w2/(La0).

In Fig. 4 the dashed lines show the effect of taking into
account the change in carrier density due to the deflection-
dependent part of the potential δφBG(x) in Eq. (10). The
calculation was done for a suspension height of d0 = 100 nm.
As can be seen, for a short and narrow ribbon the effect of
δφBG is very small.

This result is valid for a metallic armchair ribbon where all
edges are perfect and impurities absent. For transport restricted
to the lowest transverse subband, long-range impurity scatter-
ers will not affect the transport.47 However, short-range poten-
tials will have an effect. For armchair graphene nanoribbons
both theory48 and subsequent experiments49,50 suggest that
at low temperature, edge disorder induce localization. In this
case, transport at low energies is governed by variable range
hopping and is strongly suppressed. Hence schemes relying
on a single armchair ribbon require nearly perfect edges.
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FIG. 4. (Color online) Transmission probability T through a
metallic armchair ribbon (W = 17 nm, L = 28 nm) [see Fig. 1(b)] as
a function of strain ε. T is shown as function of strain ε for energies
E = 0.0, 0.3, 0.6, 0.9, 1.2 eV. The slope of the straight dashed line
determines the sensitivity of the working point around ε = 0.5%. The
curved dashed lines show T corrected for displacement-dependent
charge density (effective potential) for a ribbon with suspension
height d0 = 100 nm.

IV. SUSPENDED ZIGZAG RIBBON INTERFEROMETER

Zigzag nanoribbons are less sensitive to edge disorder.
However, applying strain will not lead to a transport gap.
Instead, to obtain a sensitivity of w2/(La0) an interferometer
with the suspended ribbon making up one of the arms
[Fig. 1(c)] can be used. The other arm is assumed to rest
on the substrate, its strain being unaffected by the backgate. In
graphene ring geometries Aharanov-Bohm oscillations have
been observed at low temperatures.51 Here, no external B field
is required. Instead, the effective gauge field due to the strain
in the suspended arm is exploited.

The idea is again to use the lowest quantized conductance
plateau. For zigzag nanoribbons this is formed from current
carried by the edge states. Hence consider an edge state coming
from the unstrained region I, which split into the two arms IIa
and IIb [see Fig. 1(c)]. The state propagating in the strained
arm (IIb) will acquire an extra phase δϕ compared to the state
propagating in the unstrained arm (IIa). Due to interference,
one expects the total transmission to be sensitive to this phase
and to modulate the conductance.

In Fig. 5 the result of numerically calculating T (using
the tight-binding Hamiltonian) from region I to region III as
a function of energy E and strain ε is shown. For energies
E < 0.25 eV, there is only one incoming state from contact I. In
this region bright areas correspond to T = 1 and dark regions
to T = 0. For E > 0.25 eV there are two incoming modes
from region I propagating through the arms. This leads to a
total transmission 1 < T < 2. Below the focus is on the region
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FIG. 5. (Color online) Transmission T as a function of energy E

and strain ε through the interferometer shown in Fig. 1(c). The figure
was generated using the tight-binding Hamiltonian and recursive
lattice Green’s function on a system of width W = 2 × 7.5 nm,
L = 52 nm, and a “gap” between the ribbons of 0.5 nm. The broad
dark bands can be attributed to destructive interference between states
propagating in the two arms. The fine structure is due to backscattering
at the point where the ribbon divides into the two arms.

E < 0.24 eV, with only a single incoming mode. The al-
ternating broad dark and bright regions in Fig. 5 arise due
to interference, whereas the fine structure is the result of
backscattering at the interfaces where the ribbon is split.

To reproduce the interference pattern seen in Fig. 5,
consider first a zigzag nanoribbon of width W in a constant
external potential V and uniform strain strain ε. Letting the
edge be oriented along the y direction, these propagating states
can be found from making the solution Ansatz

�(x,y) = eiqy[�(x,q)eik0y + χ (x,q)e−ik0y] (14)

in Eq. (2). Here �(x,q) = [�A,�B,0,0]T and χ =
[0,0,φA,φB]T are K,K ′ valley polarized mode wave functions,
respectively. As we are interested in transport in one direction
only, consider a single valley, the K valley. The boundary
conditions on the mode function are φA(x = 0) = φB(x =
W ) = 0, where W is the ribbon width. The (un-normalized)
solutions to the resulting eigenvalue equations are

�n(x,qn) =

⎛
⎜⎝

sinh(znx)
±i sinh(zn[x − W ])

0
0

⎞
⎟⎠ , (15)

where the wave vector qn and transverse wave number zn are
found from solving the equations

qn = �xzn

�y tanh znW
, E − V = ±h̄vF �xzn

sinh znW
. (16)

For |E| < h̄�xvF /W , zn = z0 is real, while for |E| >

h̄�xvF /W , it is imaginary, zn = iκn. Similar expressions hold
for the K ′-valley wave function φn(x,qn).

FIG. 6. (Color online) Transmission T as a function of energy
E and strain ε generated using the expression (1 + sin δφ)/2, where
δφ comes from solving Eqs. (16) to obtain the total phase difference
δφ = L(qa − qb − k0). The system parameters (length, width, etc.)
are the same as for the system in Fig. 5.

Solving Eqs. (16) the wave vectors q(a) and q(b) in the arms
IIa and IIb can be found for a given energy E. In the unstrained
arm, q(a) is obtained by solving with �x = �y = 1, V = 0
whereas in arm IIb, q(b) is found by using V = g0ε and �̂ [see
Eq. (B3)]. The total phase difference is δφ = L(q(a) − q(b) −
k0), where L is the length of the two interferometer arms and
k0 is given by Eq. (7). When solving Eqs. (16), W is the width
of the interferometer arms.

In Fig. 6 the transmission T , calculated as T = (1 +
sin δφ)/2, is shown with δφ obtained from solving Eqs. (16).
The system parameters (L and W ) are the same as for Fig. 5. As
can be seen, the agreement is good. For ε > E/g0 no solution
is obtained since the Fermi level in the suspended arm is then
below the charge neutrality point.

While a general solution of Eqs. (16) requires a numerical
treatment, the limit of large energies, where the dispersion
is approximately linear, can be solved. In this case q(a) ≈
±|E/h̄vF | and q(b) ≈ ±|[E − g0ε]/�yh̄vF |. To first order in
ε one finds

δφ ≈ L

a0
ε [1.7 + 1.5(E/t0) − 0.67(g0/t0)] . (17)

The first term is due to the shift of the Fermi point (synthetic
gauge field), whereas the second comes from change of Fermi
velocity in the strained region. The last term accounts for
the deformation potential. This expression shows that as was
the case for the armchair ribbon, one obtains a sensitivity to
deflections of δG/G = δT /T ∼ (w2/La0).

The effect of edge disorder on the transmission T is shown
in Fig. 7. Here, disorder has been accounted for by removing
the outermost atoms with probability p at random along each of
the four zigzag edges of the interferometer. The same system
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FIG. 7. (Color online) Transmission probability T (E,ε) at con-
stant E = 0.19 eV as a function of strain ε for varying degrees of
edge disorder. The system geometry is the same as that used in Fig. 5.
The thick black line is T without disorder whereas the thin lines
correspond to removing edge atoms with probability p along the
edges. Thin solid red line: p = 0.1. Dashed green line: p = 0.2.
Dash dotted blue line: p = 0.3.

as used in Fig. 5 was used and the curves correspond to a
constant E = 0.19 eV. The thick black line shows T (ε) without
disorder, whereas the other curves (see figure caption) show
the transmission for p = 0.1,0.2,0.3. While the presence of
the disorder distorts the interference pattern, clear conductance
modulations with the same amplitude variation and magnitude
of |∂T /∂ε| as in the absence of disorder can be seen. For
stronger disorder, conductance fluctuations with changing
strain is still seen but the overall transmission is suppressed.

For a more generic boundary which is not aligned exactly
along the zigzag edge, the sensitivity is expected to be of the
same order of magnitude. As shown in Ref. 52, a ribbon with
a generic boundary typically displays the characteristics of a
zigzag ribbon. As the shift of k is always along the (proper)
zigzag direction, the phase shift giving rise to interference will
be smaller. This will increase the relative importance of the
phase gained from, for instance, the deformation potential and
the Fermi velocity renormalization in Eq. (17).

V. CONCLUSIONS

In conclusion, by exploiting the possibility to directly
integrate coherent electron transport with graphene nanorib-
bon NEMS, the conductance through the structure can be
made to depend on the mechanical deflection w as δG/G ∼
(w2)/(La0). For a single armchair ribbon this is mainly due
to the strain-induced shift of the Fermi points (synthetic
gauge field) and the associated transport gap. For the zigzag
interferometer-type setup it is the result of a combination of
synthetic gauge field, the renormalized Fermi velocity, as well
as the deformation potential.

ACKNOWLEDGMENTS

The author wishes to thank J. Kinaret, M. Jonson, and
M. Medvedyeva. This work has received funding from the
Swedish Foundation for Strategic Research and the European
Community’s Seventh Framework program (FP7/2007-2011)
under Grant Agreement No. 233992.

APPENDIX A: ELECTROSTATICS OF SUSPENDED
RIBBONS

Consider first a simple mean field estimate of the effect
of charging energy in a nanoribbon. Hence the nanoribbon is
treated as a perfect conductor of width W suspended a distance
d above a backgate. If W/d � 1 the electrostatic potential φ

on the surface of the conductor is related to its 1D charge
density through53,54

φ ≈ ρ

2πε0
ln

8d

W
+ O(W/d).

For a ribbon connected to a reservoir at chemical potential
μ, this implies that to account for charging energy the bare
chemical potential μ should be replaced by an effective
chemical potential veff = μ − eφ/2.

In the lowest transverse subband of a nanoribbon, the 1D
charge density is proportional to veff and is given by

ρ = 4

3πt0a0
veff .

From this one finds the relation between chemical potential
(backgate bias) and the effective chemical potential

veff ≈ κμ = μ

1 + e2

3π2t0a0ε0
ln 8d

W

. (A1)

In deriving Eq. (A1), the graphene strip was assumed
to behave as a macroscopic metallic strip. For a narrow
wire, quantum effects may become important. To obtain
an approximate validation of Eq. (A1) it was compared
to numerical solutions of the tight-binding Hamiltonian in
the presence of Coulomb interactions. The interactions were
treated in the self-consistent Hartree approximation along the
lines of Ref. 55. The results are shown as the open circles
in Fig. 8. The circles were obtained for solving for widths
between 1.2 < W < 10 nm and heights 10 < d < 100 nm. As
can be seen, for the heights and widths considered, Eq. (A1)
yields a reasonable approximation.

APPENDIX B: DEFLECTION OF SUSPENDED RIBBONS

The stationary mechanical deformation of a suspended
graphene sheet subject to an external pressure in the direction
normal to the surface is determined by the von-Karman
equations for thin plates.24 Following Ref. 56 and considering
an underformed graphene sheet in the xy plane subject to a
pressure P , the differential equations may be written as (see
Sec. 14 in Ref. 56)

κ�2w − ∂

∂x

[
σxx

∂w

∂x
+ σyx

∂w

∂y

]

− ∂

∂y

[
σxy

∂w

∂x
+ σyy

∂w

∂y

]
= P, (B1)
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FIG. 8. (Color online) Comparison between quantum mechanical
simulation in self-consistent Hartree approximation and analytical
estimates for narrow armchair ribbons with only the lowest transverse
subband occupied. Shown is the constant of proportionality between
reservoir chemical potential μ and effective chemical potential veff

in the ribbon due to electron-electron interactions. The solid lines
represent Eq. (A1), while the circles come from solving the the
Schrodinger equation self-consistently.

where to ensure equilibrium the condition

∂σxx

∂x
+ ∂σxy

∂y
= ∂σyx

∂x
+ ∂σyy

∂y
= 0 (B2)

must be fulfilled. Here the notation (u,v,w) is used to denote
the Cartesian components of the displacement vector. As
graphene is an intrinsic two-dimensional material, the stress
tensor σij has here units of Nm−1 and the bending rigidity
κ ≈ 1 eV is the intrinsic bending rigidity of graphene.

The stress tensor is determined from the strain tensor, and
in terms of the displacement vector one finds

σxx=(λ + 2μ)

(
∂u

∂x
+ 1

2
|∇w|2

)
+ λ

∂v

∂y
− μ

(
∂w

∂y

)2

,

σyy=(λ + 2μ)

(
∂v

∂y
+ 1

2
|∇w|2

)
+ λ

∂u

∂x
− μ

(
∂w

∂x

)2

, (B3)

σxy=μ

(
∂v

∂x
+ ∂u

∂y
+ ∂w

∂x

∂w

∂y

)
.

Here μ ≈ 3λ ≈ 9 eV/Å2 are the Lame coefficients of
graphene and λ + 2μ ≈ 340 N/m.57 For any given pressure
P (x,y) the static deflection can be found from solving
Eqs. (B1), (B2), and (B3).

For a narrow graphene ribbon one may simplify the
equations by making the assumption that the deflection w and

the strains σij are constant across the ribbon, i.e., w(x,y) =
w(x) and σij (x,y) = σij (x). This leads to the equations for a
thin beam

κ�2w − Tx

∂2w

∂x
= P, (B4)

where Tx = σxx + T0 is a constant tension in the ribbon, with
σxx given by

σxx = λ + 2μ

2L

∫ L

0
dx

(
∂w

∂x

)2

. (B5)

The built-in tension T0 = (λ + 2μ)ε0
x has here been added to

the tension σxx arising from the deflection. This tension arises
typically in suspended graphene, as they tend to have the shape
shown in Fig. 2 with a net strain ε0

x > 0 in the suspended part.
As any large curvature occurs only in the immediate vicinity
of the point of attachment to the electrode, this taken together
with the smallness of κ implies that for the subsequent analysis
of the deformation the first term κ∂4w/∂x4 can be dropped.24

Solving Eqs. (B4) and (B5) for constant P with boundary
conditions w(0) = w(L) = 0 and κ = 0 then yields

w(x) = −PL2

2Tx

[(
x

L

)2

− x

L

]
, (B6)

where Tx is found from solving Tx = (λ + 2μ)[ε0
x +

P 2L2/(24T 2
x )].

To estimate the maximum deflection for a given P , consider
the case with no built-in strain in the x direction (ε0

x = 0). This
gives a maximum deflection of

wmax = L

4

(
3PL

λ + 2μ

)1/3

. (B7)

On the other hand, if the built-in strain ε0x dominates σxx can
be ignored and one finds

wmax = PzL
2

8ε0
x (λ + 2μ)

. (B8)

For an applied pressure Pz = e2/(8πε0W
3d) corresponding

to ρ = ρmax ∼ e/W , Eq. (B8) shows that a built-in strain
of ε0 ≈ 0.5% results in a maximum deflection of wmax ≈
10−2( L

W
)2 1

Wd
nm, where W , d, and L are all measured

in nanometers. Hence for a geometry with d = 100 nm,
L = 100 nm, and W = 10 nm the maximum deflection due
to charging will be less than 10−3 nm, which can safely be
neglected.

However, if the built-in tension approaches zero, i.e.,
ε0
x = 0, one must apply Eq. (B7) instead. Then the maximum

deflection for the same geometry becomes larger with wmax ≈
3 × 10−2( L

W
)(L

d
)1/3 ≈ 0.3 nm. In this case, wmax is so large

that one must either increase d0 or circumvent the problem by
using a side gate rather than a backgate to control the charge
density.
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