2,381 research outputs found
Work Roll Cooling System Design Optimisation in Presence of Uncertainty
Organised by: Cranfield UniversityThe paper presents a framework to optimise the design of work roll based on the cooling performance. The
framework develops Meta models from a set of Finite Element Analysis (FEA) of the roll cooling. A design of
experiment technique is used to identify the FEA runs. The research also identifies sources of uncertainties
in the design process. A robust evolutionary multi-objective algorithm is applied to the design optimisation I
order to identify a set of good solutions in the presence of uncertainties both in the decision and objective
spaces.Mori Seiki â The Machine Tool Compan
Potential energy threshold for nano-hillock formation by impact of slow highly charged ions on a CaF(111) surface
We investigate the formation of nano-sized hillocks on the (111) surface of
CaF single crystals by impact of slow highly charged ions. Atomic force
microscopy reveals a surprisingly sharp and well-defined threshold of potential
energy carried into the collision of about 14 keV for hillock formation.
Estimates of the energy density deposited suggest that the threshold is linked
to a solid-liquid phase transition (``melting'') on the nanoscale. With
increasing potential energy, both the basal diameter and the height of the
hillocks increase. The present results reveal a remarkable similarity between
the present predominantly potential-energy driven process and track formation
by the thermal spike of swift ( GeV) heavy ions.Comment: 10 pages, 2 figure
Parrondo's Paradox for Discrete-Time Quantum Walks in Momentum Space
We investigate the possibility of implementing a sequence of quantum walks whose probability distributions give an overall positive winning probability, while it is negative for the single walks (Parrondo's paradox). In particular, we have in mind an experimental realization with a Bose-Einstein condensate in which the walker's space is momentum space. Experimental problems in the precise implementation of the coin operations for our discrete-time quantum walks are analyzed in detail. We study time-dependent phase fluctuations of the coins as well as perturbations arising from the finite momentum width of the condensate. We confirm the visibility of Parrondo's paradox for experimentally available time scales of up to a few hundred steps of the walk
Nanostructured thermoelectric generator for energy harvesting
This paper presents the development processes towards a new generation of nanostructured thermoelectric generators for power harvesting from small temperature gradients by using a combination of traditional silicon microfabrication techniques, electroplating and submicron ion-track nanolithography. Polyimide nanotemplates with pore diameters ranging from 30nm to 120 nm were fabricated. Preliminary results for Bi2Te3 nanowires (50 and 120 nm diameter) electroplated into polycarbonate ion-track commercial membranes are presented. Bi2Te3 nanowires of R Ì 3m structure, with preferential orientation in the (015) and (110) crystallographic plans with nearly stoichiometric composition were electroplated. The fine-grained observed microstructure (6-10 nm) and (110) crystalline orientation appear extremely promising for improving thermoelectric material properties
Coulomb distortion of relativistic electrons in the nuclear electrostatic field
Abstract.: Continuum states of the Dirac equation are calculated numerically for the electrostatic field generated by the charge distribution of an atomic nucleus. The behavior of the wave functions of an incoming electron with given asymptotic momentum in the nuclear region is discussed in detail and the results are compared to different approximations used in the data analysis for quasielastic electron scattering off medium and highly charged nuclei. It is found that most of the approximations provide an accurate description of the electron wave functions in the range of electron energies above 100 MeV typically used in experiments for quasielastic electron scattering off nuclei only near the center of the nucleus. It is therefore necessary that the properties of exact wave functions are investigated in detail in order to obtain reliable results in the data analysis of quasielastic (e, e'p) knockout reactions or inclusive quasielastic (e, e') scattering. Detailed arguments are given that the effective momentum approximation with a fitted potential parameter is a viable method for a simplified treatment of Coulomb corrections for certain kinematical regions used in experiments. Numerical calculations performed within the framework of the single-particle shell model for nucleons lead to the conclusion that our results are incompatible with calculations performed about a decade ago, where exact electron wave functions were used in order to calculate Coulomb corrections in distorted-wave Born approximation. A discussion of the exact solutions of the Dirac equation for free electrons in a Coulomb field generated by a point-like charge and some details relevant for the numerical calculations are given in the appendi
Production of QED pairs at small impact parameter in relativistic heavy ion collisions
The STAR collaboration at RHIC is measuring the production of
electron-positron pairs at small impact parameters, larger than but already
close to the range, where the ions interact strongly with each other. We
calculate the total cross section, as well as, differential distributions of
the pair production process with the electromagnetic excitation of both ions in
a semiclassical approach and within a lowest order QED calculation. We compare
the distribution of electron and positron with the one coming from the cross
section calculation without restriction on impact parameter. Finally we give an
outlook of possible results at the LHC.Comment: 15 pages, 8 figure
- âŠ