11,163 research outputs found
Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile
We investigated the effects of temporal variability in a disturbance regime on fouling communities at two study sites in a northern-central Chilean bay. Fouling assemblages grown on artificial settlement substrata were disturbed by mechanical removal of biomass at different time intervals. Using one single disturbance frequency (10 disturbance events over 5 months) we applied 7 different temporal disturbance treatments: a constant disturbance regime (identical intervals between disturbance events), and 6 variable treatments where both variableness and sequences of intervals between disturbance events were manipulated. Two levels of temporal variableness (low and high, i.e. disturbance events were either dispersed or highly clumped in time) in the disturbance regime were applied by modifying the time intervals between subsequent disturbance events. To investigate the temporal coupling between disturbance events and other ecological processes (e.g. larval supply and recruitment intensity), three different sequences of disturbance intervals were nested in each of the two levels of temporal variableness. Species richness, evenness, total abundance, and structure of communities that experienced the various disturbance regimes were compared at the end of the experiment (15 days after the last disturbance event). Disturbance strongly influenced the community structure and led to a decrease in evenness and total abundance but not species richness. In undisturbed reference communities, the dominant competitor Pyura chilensis (Tunicata) occupied most available space while this species was suppressed in all disturbed treatments. Surprisingly, neither temporal variableness in the disturbance regime nor the sequence of intervals between disturbance events had an effect on community structure. Temporal variability in high disturbance regimes may be of minor importance for fouling communities, because they are dominated by opportunistic species that are adapted to rapidly exploit available space
Heralded Entanglement of Arbitrary Degree in Remote Qubits
Incoherent scattering of photons off two remote atoms with a Lambda-level
structure is used as a basic Young-type interferometer to herald long-lived
entanglement of an arbitrary degree. The degree of entanglement, as measured by
the concurrence, is found to be tunable by two easily accessible experimental
parameters. Fixing one of them to certain values unveils an analog to the
Malus' law. An estimate of the variation in the degree of entanglement due to
uncertainties in an experimental realization is given.Comment: published version, 4 pages and 2 figure
Wachstumsstörungen als Leitsymptom
Zusammenfassung: Kleinwuchs als Leitsymptom stellt eine häufige Fragestellung sowohl in der humangenetischen als auch in der pädiatrischen Sprechstunde dar. Definiert ist Kleinwuchs als eine Körperhöhe unter der 3.Perzentile der Norm bzw. unter −2Standardabweichungen. Diese macht sich bemerkbar durch Änderungen der Wachstumsgeschwindigkeit oder des Wachstumsverlaufs, welche grundsätzlich genetisch determiniert, jedoch auch von sekundären Faktoren beeinflussbar sind. Das Spektrum der zugrunde liegenden genetischen Ursachen reicht von Störungen der Wachstumshormonsekretion und -wirkung über Skelettdysplasien bis hin zu komplexen Fehlbildungssyndromen. Die genetische Abklärung stellt somit einen Grundpfeiler zur Beurteilung der Prognose und einer möglichen therapeutischen Intervention dar. Es werden die grundlegenden diagnostischen Überlegungen anhand häufiger Differenzialdiagnosen, deren genetischen Grundlagen und Behandlungsmöglichkeiten aufgeführt: Ullrich-Turner-Syndrom, Léri-Weill-Syndrom, Silver-Russell-Syndrom, Noonan-Syndrom und Achondroplasi
Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany)
In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area
Recommended from our members
Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany)
In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area
Operational determination of multi-qubit entanglement classes via tuning of local operations
We present a physical setup with which it is possible to produce arbitrary
symmetric long-lived multiqubit entangled states in the internal ground levels
of photon emitters, including the paradigmatic GHZ and W states. In the case of
three emitters, where each tripartite entangled state belongs to one of two
well-defined entanglement classes, we prove a one-to-one correspondence between
well-defined sets of experimental parameters, i.e., locally tunable polarizer
orientations, and multiqubit entanglement classes inside the symmetric
subspace.Comment: Improved version. Accepted in Physical Review Letter
Dependence of Cluster Diffusivity upon Cluster Structure
We show that the diffusion coefficient of an adsorbed cluster can be decomposed into two factors, one depending upon a weighted length of the \u27active\u27 perimeter and the other depending upon a subtle correlation between hops taken by cluster atoms during diffusion. Both of these factors are structure dependent. Monte-Carlo simulations are performed for clusters on a triangular lattice
- …