2,680 research outputs found

    Extragalactic H3O+: Some Consequences

    Full text link
    We discuss some implications of our recent detection of extragalactic H3O+: the location of the gas in M82, the origin of energetic radiation in M82, and the possible feedback effects of star formation on the cosmic ray flux in galaxies.Comment: Five pages, one figure; contribution to proceedings of conference "Far-infrared observations of the interstellar medium", December 2007, Bad Honne

    Identifying Galaxy Mergers in Observations and Simulations with Deep Learning

    Get PDF
    Mergers are an important aspect of galaxy formation and evolution. We aim to test whether deep learning techniques can be used to reproduce visual classification of observations, physical classification of simulations and highlight any differences between these two classifications. With one of the main difficulties of merger studies being the lack of a truth sample, we can use our method to test biases in visually identified merger catalogues. A convolutional neural network architecture was developed and trained in two ways: one with observations from SDSS and one with simulated galaxies from EAGLE, processed to mimic the SDSS observations. The SDSS images were also classified by the simulation trained network and the EAGLE images classified by the observation trained network. The observationally trained network achieves an accuracy of 91.5% while the simulation trained network achieves 65.2% on the visually classified SDSS and physically classified EAGLE images respectively. Classifying the SDSS images with the simulation trained network was less successful, only achieving an accuracy of 64.6%, while classifying the EAGLE images with the observation network was very poor, achieving an accuracy of only 53.0% with preferential assignment to the non-merger classification. This suggests that most of the simulated mergers do not have conspicuous merger features and visually identified merger catalogues from observations are incomplete and biased towards certain merger types. The networks trained and tested with the same data perform the best, with observations performing better than simulations, a result of the observational sample being biased towards conspicuous mergers. Classifying SDSS observations with the simulation trained network has proven to work, providing tantalizing prospects for using simulation trained networks for galaxy identification in large surveys.Comment: Submitted to A&A, revised after first referee report. 20 pages, 22 figures, 14 tables, 1 appendi

    Water emission from the high-mass star-forming region IRAS 17233-3606. High water abundances at high velocities

    Get PDF
    We investigate the physical and chemical processes at work during the formation of a massive protostar based on the observation of water in an outflow from a very young object previously detected in H2 and SiO in the IRAS 17233-3606 region. We estimated the abundance of water to understand its chemistry, and to constrain the mass of the emitting outflow. We present new observations of shocked water obtained with the HIFI receiver onboard Herschel. We detected water at high velocities in a range similar to SiO. We self-consistently fitted these observations along with previous SiO data through a state-of-the-art, one-dimensional, stationary C-shock model. We found that a single model can explain the SiO and H2O emission in the red and blue wings of the spectra. Remarkably, one common area, similar to that found for H2 emission, fits both the SiO and H2O emission regions. This shock model subsequently allowed us to assess the shocked water column density, N(H2O)=1.2x10^{18} cm^{-2}, mass, M(H2O)=12.5 M_earth, and its maximum fractional abundance with respect to the total density, x(H2O)=1.4x10^{-4}. The corresponding water abundance in fractional column density units ranges between 2.5x10^{-5} and 1.2x10^{-5}, in agreement with recent results obtained in outflows from low- and high-mass young stellar objects.Comment: accepted for publication as a Letter in Astronomy and Astrophysic

    Temperatures of dust and gas in S~140

    Get PDF
    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 ÎĽ\mum and SCUBA at 450 ÎĽ\mum. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. We find that the gas temperature around the infrared sources varies between 35 and 55K and that the gas is systematically warmer than the dust by ~5-15K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35K in the surrounding up to 40-45K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ~10^2 Lo. We conclude that the gas heating in the S 140 region is very efficient even at high densities, most likely due to the deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&

    The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey

    Get PDF
    This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI instrument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.Comment: Accepted to A&
    • …
    corecore