5,236 research outputs found

    Germination and growth of selected higher plants in a simulated space cabin environment Final report, 9 Apr. - 30 Aug. 1970

    Get PDF
    Germination and growth of selected higher plants in simulated space cabin environment similar to conditions within Skyla

    Scattering by nonspherical systems

    Get PDF
    Scattering by nonspherical particles with size of order of wavelength - scattering by axisymmetric penetrable particles using approximate matching of boundary condition

    Electrodynamic Radiation Reaction and General Relativity

    Full text link
    We argue that the well-known problem of the instabilities associated with the self-forces (radiation reaction forces) in classical electrodynamics are possibly stabilized by the introduction of gravitational forces via general relativity

    Deposition of general ellipsoidal particles

    Full text link
    We present a systematic overview of granular deposits composed of ellipsoidal particles with different particle shapes and size polydispersities. We study the density and anisotropy of such deposits as functions of size polydispersity and two shape parameters that fully describe the shape of a general ellipsoid. Our results show that, while shape influences significantly the macroscopic properties of the deposits, polydispersity plays apparently a secondary role. The density attains a maximum for a particular family of non-symmetrical ellipsoids, larger than the density observed for prolate or oblate ellipsoids. As for anisotropy measures, the contact forces show are increasingly preferred along the vertical direction as the shape of the particles deviates for a sphere. The deposits are constructed by means of an efficient molecular dynamics method, where the contact forces are efficiently and accurately computed. The main results are discussed in the light of applications for porous media models and sedimentation processes.Comment: 7 pages, 8 figure

    Intraoperative suprachoroidal hemorrhage during Xen gel stent implantation

    Get PDF
    Purpose: To report a rare case of intraoperative suprachoroidal hemorrhage during Xen gel stent implantation with accompanying surgical video and subsequent 6-month follow-up. Observations: Our patient required incisional glaucoma surgery after inadequate pressure reduction with four classes of topical medication, methazolamide, and selective laser trabeculoplasty. The patient underwent Xen gel stent implantation and developed an intraoperative suprachoroidal hemorrhage, which was managed in the operating room. The patient recovered his baseline visual acuity with a functioning bleb out to 6 months postoperatively. Conclusions and Importance: Micro-invasive glaucoma surgeries offer a new repertoire of surgical options, purportedly with safer and less invasive techniques. Xen gel stent implantation may be a promising alternative to traditional trabeculectomies and tube shunt implants, providing similar IOP lowering results with potentially lower risk for complications. However, rare and severe complications such as suprachoroidal hemorrhage may still occur. Recognizing a suprachoroidal bleed, particularly intraoperatively, will still be necessary to help minimize the potential vision threatening sequelae often associated with this severe complication

    Gamow Shell Model Description of Neutron-Rich Nuclei

    Get PDF
    This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the non-resonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. The systems with two valence neutrons are considered. The Gamow shell model, which is a straightforward extension of the traditional shell model, is shown to be an excellent tool for the microscopic description of weakly bound systems. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent versio

    Atomic and Molecular Data for Optical Stellar Spectroscopy

    Get PDF
    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2- to 10-m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre (VAMDC). We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 100000 stars.Comment: Published 30 April 2015 in Physica Script
    • …
    corecore