799 research outputs found

    The initial stages of cave formation: Beyond the one-dimensional paradigm

    Full text link
    The solutional origin of limestone caves was recognized over a century ago, but the short penetration length of an undersaturated solution made it seem impossible for long conduits to develop. This is contradicted by field observations, where extended conduits, sometimes several kilometers long, are found in karst environments. However, a sharp drop in the dissolution rate of CaCO_3 near saturation provides a mechanism for much deeper penetration of reactant. The notion of a "kinetic trigger" - a sudden change in rate constant over a narrow concentration range - has become a widely accepted paradigm in speleogenesis modeling. However, it is based on one-dimensional models for the fluid and solute transport inside the fracture, assuming that the dissolution front is planar in the direction perpendicular to the flow. Here we show that this assumption is incorrect; a planar dissolution front in an entirely uniform fracture is unstable to infinitesimal perturbations and inevitably breaks up into highly localized regions of dissolution. This provides an alternative mechanism for cave formation, even in the absence of a kinetic trigger. Our results suggest that there is an inherent wavelength to the erosion pattern in dissolving fractures, which depends on the reaction rate and flow rate, but is independent of the initial roughness. In contrast to one-dimensional models, two-dimensional simulations indicate that there is only a weak dependence of the breakthrough time on kinetic order; localization of the flow tends to keep the undersaturation in the dissolution front above the threshold for non-linear kinetics.Comment: to be published in Earth and Planetary Science Letter

    Instabilities in the dissolution of a porous matrix

    Full text link
    A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused on a steadily propagating dissolution front that separates regions of high and low porosity. In this paper we show that this is not the only possible dissolutional instability in porous rocks; there is another instability that operates instantaneously on any initial porosity field, including an entirely uniform one. The relative importance of the two mechanisms depends on the ratio of the porosity increase to the initial porosity. We show that the "inlet" instability is likely to be important in limestone formations where the initial porosity is small and there is the possibility of a large increase in permeability. In quartz-rich sandstones, where the proportion of easily soluble material (e.g. carbonate cements) is small, the instability in the steady-state equations is dominant.Comment: to be published in Geophysical Research Letter

    Spin Waves in the Ferromagnetic Ground State of the Kagome Staircase System Co3V2O8

    Full text link
    Inelastic neutron scattering measurements were performed on single crystal Co3V2O8 wherein magnetic cobalt ions reside on distinct spine and cross-tie sites within kagome staircase planes. This system displays a rich magnetic phase diagram which culminates in a ferromagnetic ground state below Tc~6 K. We have studied the low-lying magnetic excitations in this phase within the kagome plane. Despite the complexity of the system at higher temperatures, linear spin-wave theory describes most of the quantitative detail of the inelastic neutron measurements. Our results show two spin-wave branches, the higher energy of which displays finite spin-wave lifetimes well below Tc, and negligible magnetic exchange coupling between Co moments on the spine sites.Comment: 4 pages and 4 figure

    Reactive-infiltration instabilities in rocks. Fracture dissolution

    Full text link
    A reactive fluid dissolving the surface of a uniform fracture will trigger an instability in the dissolution front, leading to spontaneous formation of pronounced well-spaced channels in the surrounding rock matrix. Although the underlying mechanism is similar to the wormhole instability in porous rocks there are significant differences in the physics, due to the absence of a steadily propagating reaction front. In previous work we have described the geophysical implications of this instability in regard to the formation of long conduits in soluble rocks. Here we describe a more general linear stability analysis, including axial diffusion, transport limited dissolution, non-linear kinetics, and a finite length system.Comment: to be published in J. Fluid. Mec

    Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide

    Get PDF
    Molecular cobalt and nickel complexes are among the most promising homogeneous systems for electrocatalytic hydrogen evolution. However, there has been little exploration into the effect of gaseous co-additives such as CO and H_2, which may be present in operating hydrogen-evolving or carbon-dioxide reduction systems, on the performance of these molecular electrocatalysts. In this report, we investigate the electrocatalytic activity of six cobalt and nickel complexes supported by tetraazamacrocyclic or diazadiphosphacyclooctane ligands for the reduction of p-toluenesulfonic acid to hydrogen in acetonitrile under inert atmosphere and in the presence of CO and H_2. We present an elevated-pressure electrochemical apparatus capable of reaching CO and H_2 pressures of ca. 15–520 pounds per square inch (psia) (∼1–35 atm), and we use this apparatus to determine binding constants for CO addition for each catalyst and study the inhibition of the electrocatalysis as a function of CO and H_2 pressure. In the case of CO, the extent of catalytic inhibition is correlated to the binding constant, with the cobalt complexes showing a greater degree of catalyst inhibition compared to the nickel complexes. In the case of H2, no complex showed appreciable electrocatalytic inhibition even at H_2 pressures of ca. 500 psia

    Diversity of growth responses of soil saprobic fungi to recurring heat events

    Get PDF
    As a consequence of ongoing climate change, the frequency of extreme heat events is expected to increase. Recurring heat pulses may disrupt functions supported by soil microorganisms, thus affecting the entire ecosystem. However, most perturbation experiments only test effects of single heat events, and therefore it remains largely unknown how soil microorganisms react to repeated pulse events. Here we present data from a lab experiment exposing 32 filamentous fungi, originally isolated from the same soil, to sequential heat perturbations. Soil saprobic fungi isolates were exposed to one or two heat pulses: mild (35oC/2h), strong (45oC/1h), or both in sequence (35oC/2h+45oC/1h), and we assessed growth rate. Out of the 32 isolates 13 isolates showed an antagonistic response, 3 isolates a synergistic response and 16 isolates responded in an additive manner. Thus the 32 filamentous fungal isolates used here showed the full range of possible responses to an identical heat perturbation sequence. This diversity of responses could have consequences for soil-borne ecosystem services, highlighting the potential importance of fungal biodiversity in maintaining such services, particularly in the context of climate change

    Fungal growth response to recurring heating events is modulated by species interactions

    Get PDF
    An increasing frequency of heat events can affect key organisms related to ecosystem functions. Soil saprobic fungi have important roles in carbon and nutrient cycling in soils, and they are clearly affected by heat events. When tested individually, saprobic soil fungi showed a variety of growth responses to a series of two heat events. However, in nature these fungi rarely grow alone. Coexistence theory predicts that diversity in the response to stressors can influence the outcome of species interactions and growth. This means that the co-cultivation of different fungi may affect their growth response to heat events. To test if recurring heat events affect fungal growth in small synthetic communities, we evaluated fungi previously known to respond to recurring heat events in experimental small communities composed of two and three species. For the fungi growing in pairs, surprisingly, most of the responses could not be predicted by how the isolates responded individually. In some cases, facilitation or increased competition were observed. For the three fungi growing together, results were also not predicted by the individual or pair responses. Both the heat events and the small communities influenced the growth of the fungi and growth properties emerged from the interactions among isolates and the heat stress. We show that not only do environmental conditions influence fungal interactions and growth rates, but also that the co-cultivation of different fungi affects fungal response to recurring heat events. These results indicate that more complex experimental designs are needed to better understand the effects of recurring heat events and climate change on soil fungi

    A high-sensitivity 6.7 GHz methanol maser survey toward H2O sources

    Full text link
    We present the results of a high sensitivity survey for 6.7 GHz methanol masers towards 22 GHz water maser using the 100 m Efflesberg telescope. A total of 89 sources were observed and 10 new methanol masers were detected. The new detections are relatively faint with peak flux densities between 0.5 and 4.0 Jy. A nil detection rate from low-mass star forming regions enhances the conclusion that the masers are only associated with massive star formation. Even the faintest methanol maser in our survey, with a luminosity of 1.1 10−9L⊙10^{-9} L_\odot is associated with massive stars as inferred from its infrared luminosity.Comment: Accepted for publication in A&

    Residual entropy in a model for the unfolding of single polymer chains

    Full text link
    We study the unfolding of a single polymer chain due to an external force. We use a simplified model which allows to perform all calculations in closed form without assuming a Boltzmann-Gibbs form for the equilibrium distribution. Temperature is then defined by calculating the Legendre transform of the entropy under certain constraints. The application of the model is limited to flexible polymers. It exhibits a gradual transition from compact globule to rod. The boundary line between these two phases shows reentrant behavior. This behavior is explained by the presence of residual entropy.Comment: 5 pages, 4 figures, extended version of arXiv:cond-mat/061225
    • …
    corecore