981 research outputs found

    Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment

    Get PDF
    A rapidly increasing number of chemicals, or their degradation products, are being recognized as possessing estrogenic activity, albeit usually weak. We have found that effluent from sewage treatment works contains a chemical, or mixture of chemicals, that induces vitellogenin synthesis in male fish maintained in the effluent, thus indicating that the effluent is estrogenic. The effect was extremely pronounced and occurred at all sewage treatment works tested. The nature of the chemical or chemicals causing the effect is presently not known. However, we have tested a number of chemicals known to be estrogenic to mammals and have shown that they are also estrogenic to fish; that is, no species specificity was apparent. Many of these weakly estrogenic chemicals are known to be present in effluents. Further, a mixture of different estrogenic chemicals was considerably more potent than each of the chemicals when tested individually, suggesting that enhanced effects could occur when fish are exposed simultaneously to various estrogenic chemicals (as is likely to occur in rivers receiving effluent). Subsequent work should determine whether exposure to these chemicals at the concentrations present in the environment leads to any deleterious physiological effects

    The unique chemical reactivity of a graphene nanoribbon's zigzag edge

    Get PDF
    The zigzag edge of a graphene nanoribbon possesses a unique electronic state that is near the Fermi level and localized at the edge carbon atoms. We investigate the chemical reactivity of these zigzag edge sites by examining their reaction energetics with common radicals from first principles. A "partial radical" concept for the edge carbon atoms is introduced to characterize their chemical reactivity, and the validity of this concept is verified by comparing the dissociation energies of edge-radical bonds with similar bonds in molecules. In addition, the uniqueness of the zigzag-edged graphene nanoribbon is further demonstrated by comparing it with other forms of sp2 carbons, including a graphene sheet, nanotubes, and an armchair-edged graphene nanoribbon.Comment: 24 pages, 9 figure

    Inherent noise can facilitate coherence in collective swarm motion

    Get PDF
    Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data

    Mobile phone-based interventions for improving contraception use (Review)

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows: To determine wheth er inter ventions delivered by mobile phone can improve contraception us

    Putting pharmaceuticals into the wider context of challenges to fish populations in rivers

    Get PDF
    The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure

    The estrogenic activity of phthalate esters in vitro

    Get PDF
    A large number of phthalate esters were screened for estrogenic activity using a recombinant yeast screen. a selection of these was also tested for mitogenic effect on estrogen-responsive human breast cancer cells. A small number of the commercially available phthalates tested showed extremely weak estrogenic activity. The relative potencies of these descended in the order butyl benzyl phthalate (BBP) > dibutyl phthalate (DBP) > diisobutyl phthalate (DIBP) > diethyl phthalate (DEP) > diisiononyl phthalate (DINP). Potencies ranged from approximately 1 x 10(6) to 5 x 10(7) times less than 17beta-estradiol. The phthalates that were estrogenic in the yeast screen were also mitogenic on the human breast cancer cells. Di(2-ethylhexyl) phthalate (DEHP) showed no estrogenic activity in these in vitro assays. A number of metabolites were tested, including mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mon-n-octyl phthalate; all were wound to be inactive. One of the phthalates, ditridecyl phthalate (DTDP), produced inconsistent results; one sample was weakly estrogenic, whereas another, obtained from a different source, was inactive. analysis by gel chromatography-mass spectometry showed that the preparation exhibiting estrogenic activity contained 0.5% of the ortho-isomer of bisphenol A. It is likely that the presence of this antioxidant in the phthalate standard was responsible for the generation of a dose-response curve--which was not observed with an alternative sample that had not been supplemented with o,p'-bisphenol A--in the yeast screen; hence, DTDP is probably not weakly estrogenic. The activities of simple mixtures of BBP, DBP, and 17beta-estradiol were assessed in the yeast screen. No synergism was observed, although the activities of the mixtures were approximately additive. In summary, a small number of phthalates are weakly estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vivo; this will require tests using different classes of vertebrates and different routes of exposure

    A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals

    Get PDF
    Aquatic organisms can be exposed to thousands of chemicals discharged by the human population. Many of these chemicals are considered disruptive to aquatic wildlife; the literature on the impacts of these chemicals grows daily. However, since time and resources are not infinite, we must focus on the chemicals which represent the greatest threat. One group of chemicals of increasing concern is the pharmaceuticals, where the struggle is to identify which of them represent the greatest threat. In the present study, we compiled a list of 12 pharmaceuticals based on scoring the prevalence of different compounds from previous prioritization reviews. These included rankings based on prescription data, environmental concentrations, PEC/PNEC ratios, PBT, and fish plasma model approaches. The most frequently cited were diclofenac, paracetamol, ibuprofen, carbamazepine, naproxen, atenolol, ethinylestradiol, aspirin, fluoxetine, propranolol, metoprolol and sulfamethoxazole. For each pharmaceutical, literature on effect concentrations was compiled and compared with river concentrations in the UK. The pharmaceuticals were ranked on the degree of difference between the median effect and median river concentrations. EE2 was ranked as the highest concern, followed by fluoxetine, propranolol and paracetamol. The relative risk of these pharmaceuticals was compared with those of metals and some persistent organic pollutants. Pharmaceuticals appear to be less of a threat to aquatic organisms than some metals (Cu, Al, Zn) and triclosan using this ranking approac

    Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    Get PDF
    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms
    • …
    corecore