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__________________________________________________________________________ 7 

Abstract  8 

This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole 9 

(SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe.  This involved reviewing 10 

national consumption rates together with assessing excretion and sewage treatment removal rates.  From 11 

this information, it was possible to construct best, expected and worst case scenarios for the discharge of 12 

these antibiotics into rivers.  Consumption data showed surprising variations, up to 200-fold in the popularity 13 

of different antibiotics across different European nations.  Using the water resources model GWAVA which 14 

has a spatial resolution of approximately 6 x 9 km, river water concentrations throughout Europe were 15 

predicted based on 31-year climate data.  The modelled antibiotic concentrations were within the range of  16 

measurements reported previously in European effluents and rivers.  With the expected scenario, the 17 

predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90 % by length of 18 

surface waters.  In the worst case scenario concentrations could reach between 0.1 and 1 µg/L at the most 19 

exposed locations .  As both predicted and observed sewage effluent concentrations were below reported 20 

effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected.  Predicted river 21 

concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2-3 orders 22 

of magnitude lower.  TRI appeared to be of the least concern with around 6 orders of magnitude difference 23 

between predicted and effect levels.  However, mixture toxicity may elevate this risk and antibiotic levels of 24 

0.1-1 µg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. 25 

Key words: ciprofloxacin, sulfamethoxazole, trimethoprim, erythromycin, risk, rivers, environment, toxicity 26 

1. Introduction 27 

The discharge of pharmaceuticals in wastewater into the aquatic environment has been a source of 28 

concern in scientific circles for more than a decade (Daughton and Ternes, 1999; Verlicchi et al., 2012) and is 29 

now appearing on the agenda of European legislators.  This was highlighted by a proposal from the European 30 
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Commission to add some pharmaceuticals to the list of priority substances (COM(2011)876).  The current 31 

Article 8c of 2013/39/EU (Priority Substances Directive) requires the Commission to develop a strategic 32 

approach to pharmaceuticals and water pollution.   There are approximately 3,000 pharmaceuticals in 33 

general use today (Rand-Weaver et al., 2013) so it is difficult to decide which represent the greatest threat 34 

to aquatic wildlife.   A variety of approaches can be found in the literature to help us decide where to focus 35 

our attention (Guillen et al., 2012) including pharmaceutical sales, detection in the environment, risk of 36 

exceeding an effect concentration and persistence.    Many of these reviews have ranked antibiotics as 37 

amongst the pharmaceuticals of greatest concern for the aquatic environment (Al Aukidy et al., 2014; Besse 38 

and Garric, 2008; Christensen et al., 2009; Dong et al., 2013; Kumar and Xagoraraki, 2010; Ortiz de Garcia et 39 

al., 2013).  40 

Antibiotics have played a major role in improving human health and supporting livestock production 41 

since World War II.  As they are not completely metabolised in the body, widespread discharge into the 42 

aquatic environment from both domestic and agricultural sources occurs.  Amongst river organisms, it would 43 

seem that blue-green algae (prokaryotes), are the most sensitive with direct toxicity at a few µg/L (Ando et 44 

al., 2007; Halling-Sorensen, 2000).  Thus, antibiotics might reduce algal biodiversity.    Another concern with 45 

the discharge of antibiotics is the potential development of resistant bacteria, even at low concentrations 46 

(Gullberg et al., 2011).  Although, antibiotic resistance in the environment may be the result of excreted 47 

bacteria from patients or animals themselves, it may have been stimulated in response to the antibiotic 48 

discharge.  Some have argued that this is happening already in rivers downstream of sewage treatment 49 

plants (STPs) or intensive agriculture (Moore et al., 2010; Winkworth, 2013). 50 

This study examined four different antibiotics; ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim 51 

(TRI) and erythromycin (ERY).  CIP is part of the fluoroquinolone group of antibiotics, which became widely 52 

used from 1990, it targets the DNA gyrase of bacteria and so inhibits cell replication (Hooper et al., 1987).   53 

SUF belongs to the sulphonamide group which inhibits an enzyme involved in the synthesis of tetrahydrafolic 54 

acid (part of the thymidine metabolic pathway in DNA synthesis).  TRI acts by targeting another enzyme 55 
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involved in the tetrahydrafolic acid pathway and so SUF and TRI have often been used together in therapy 56 

since the late 1960s (Burchall, 1973; Seydel et al., 1972).  ERY has been used since the 1950s and is part of 57 

the macrolide group of antibiotics which is believed to act on the 70S RNA ribosome thereby preventing 58 

transfer RNA from moving and so halting peptide synthesis (Igarashi et al., 1969). 59 

Ciprofloxacin, SUF, TRI and ERY have been identified as antibiotics of particular concern by scientists 60 

in the aquatic environments of the UK, Denmark, Sweden, France, Spain, USA and Worldwide (Besse and 61 

Garric, 2008; Castensson et al., 2009; Christensen et al., 2009; Dong et al., 2013; Hughes et al., 2013; Jones 62 

et al., 2002; Kaplan, 2013; Lienert et al., 2007; Ortiz de Garcia et al., 2013).   The high risk ranking of these 63 

particular four antibiotics relative to others has been linked to their consumption, discharge, persistence and 64 

toxic properties.  Apart from human patients, agriculture accounts for a large amount of antibiotic 65 

consumption and of the four antibiotics selected, TRI appears to be the most popular in veterinary practice 66 

in Europe (Kools et al., 2008).  However, the route to rivers from this source is unpredictable, thus this study 67 

only focused on discharge from domestic sources for which the route to surface waters is relatively well 68 

understood and therefore predictable.   69 

The overall objective of this study was to examine how close European river concentrations of four 70 

of the antibiotics of particular concern are to reported acute toxicity levels.  Some river measurements of 71 

these antibiotics exist, however, isolated grab samples can give a misleading impression of exposures and 72 

hence risk.  Geographic information system (GIS) based river water quality modelling provides an alternative 73 

approach to spot sampling through providing a wide range of predicted values associated with geography 74 

and hydrological natural variability.  A review of the strengths and weaknesses of these two approaches for 75 

polar contaminants has been made before, but both methods combined can support one another to give 76 

greater confidence in risk assessment (Johnson et al., 2008).  In this study the Global Water Availability 77 

Assessment  model (GWAVA) (Meigh et al., 1999) was used in a water quality mode to predict antibiotic 78 

concentrations throughout the rivers of Europe.  The following objectives were addressed: 79 

• To examine different European national per capita antibiotic consumption rates 80 
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• To compare the range of predicted concentrations in effluents with those reported in the literature, 81 

• To predict surface water concentrations throughout Europe using a spatially explicit model, 82 

• To compare national predicted river concentrations against published measured concentrations 83 

• To examine whether current predicted concentrations might exceed those which are acutely toxic to 84 

algae, the most sensitive aquatic species? 85 

2. Methods 86 

2.1. Method introduction 87 

The process begins with collecting information on national consumption which is converted to a per 88 

capita rate.  Then information is gathered on excretion rates of the parent compound followed by a review 89 

of removal rates of the parent compound in sewage treatment.  This information can be used to predict 90 

effluent concentrations for different countries using assumptions on wastewater discharge per capita.  The 91 

research involved using ranges of key words on popular academic search engines to acquire literature and 92 

then examining the references in that literature to widen the net.  Peer- reviewed data were preferred, 93 

unless these were absent or excellent quality publicly available information was present.  This does not 94 

guarantee all the best literature is found,  nevertheless the assumptions and consequent rates can be tested 95 

against  measured values.  To predict concentrations in real river water situations, the rate information can 96 

be imported into GIS-based water quality models.  The model will associate the population connected to 97 

sewage treatment plants with the pharmaceutical consumption/excretion and sewage removal information 98 

previously collected in actual river networks. 99 

2.2.  Assessing per capita consumption rates 100 

The first and arguably most important hurdle to overcome in any predictive model aiming to report 101 

concentrations of human derived pharmaceuticals in water is obtaining accurate information on 102 

consumption (Johnson et al., 2008).   If this is incorrect the modelling exercise will fail before it has begun.  103 

Reports in the literature can be used to assess a per capita consumption, given the population of the country 104 
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at that time (Table 1).  The consumption data found ranged from as recent as four years to sixteen years ago.  105 

However, overall changes in European national antibiotic consumption over time tend to be small as 106 

revealed in a survey of use for 1997-2009.  For example, over this period there was a 2% increase in the UK, 107 

an 8% drop in Spain and a 14% increase in Germany (Adriaenssens et al., 2011).   108 

 109 

 

Table 1  

National antibiotic drug consumption data (mg/cap/d) collected for ciproflaxacin (CIP), Sulfamethoxazole 
(SUF), trimethoprim (TRI) and erthromycin (ERY). The data, originally in g/year, was transformed to 
mg/cap/day using the national population*1 at the time of the survey. 

Country Source CIP use & year 
(mg/cap/d) 

SUF use & 
year (mg/cap/d) 

TRI use & 
year 
(mg/cap/d) 

ERY use & 
year 
(mg/cap/d) 

Germany (Roig, 2010; ter Laak et 
al., 2010) 

0.471(2006)*2 1.786 (2006) 0.405 (2001) 0.704 (2006) 

France (Roig, 2010; ter Laak et 
al., 2010) 

0.562 (2006) 0.770 (2008) 0.906 (2008) 0.822 (1998) 

UK NHS dataset from 
www.ic.nhs.uk (Boxall 
et al., 2014; Roig, 
2010) 

0.331 (2010) 0.049 (2006) 0.597 (2014) 1.82 (2010) 

Spain (Carballa et al., 2008; 
de Garcia et al., 2013; 
Roig, 2010) 

1.1 (2010) 0.633 (2010) 0.004 (2010) 5.14 (2003) 

Poland (Roig, 2010) 0.345 (2006) 0.468 (2006) NA*3 0.455 (2006) 
Austria (McArdell et al., 2003) NA NA NA 0.342 (1998)  
Greece (Straub, 2013) NA NA 0.194 (2003) NA 
Switzerland (Alder, 2006; Giger et 

al., 2003; ter Laak et 
al., 2010) 

NA 0.853 (2004) 0.193 (2004) 0.066 (1999) 

Sweden (Alder, 2006; Lindberg 
et al., 2005) 

1.104 0.440 (2005) NA NA 

European 
mean value 

 0.652 0.820 0.418 1.336 

*1 Historic population information from indexmundi (http://www.indexmundi.com/factbook/countries) 110 
which is compiled from CIA World fact book and the IMF world economic outlook 2011 111 
*2Information from the 1999-2006 period provided in this reference (Roig, 2010) 112 
*3 Information not provided 113 

The difference in CIP consumption between nations with available data was just over 3-fold (most popular in 114 

Spain), whilst for SUF consumption differed by 35-fold with the highest apparent consumption occurring in 115 

http://www.ic.nhs.uk/
http://www.indexmundi.com/factbook/countries
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Germany.  For TRI, consumption differed by 226-fold with the highest consumption occurring in France 116 

whilst ERY consumption differed by 78-fold with the highest consumption occurring in Spain (Table 1).   For 117 

some antibiotics this consumption is not stable throughout the year, with seasonal increases to treat winter 118 

respiratory tract infections (Bruyndonckx et al., 2014; Suda et al., 2014). 119 

2.3.  Assessing per capita excretion rates and sewage removal rates 120 

The next stage in estimating the domestic load of a pharmaceutical is to ascertain how much of the 121 

parent compound is excreted unchanged by the patient.  Age, health and co-medication can all influence the 122 

percentage excreted.  It is therefore important to survey as much literature as possible on excretion rates to 123 

discover the range and find a mean or median value.  Similarly, variations in sewage treatment performance 124 

can influence pharmaceutical removal rates in treatment.   Information on the proportion of these drugs 125 

excreted as parent compounds was limited for CIP but more abundant for the other compounds (Table S1).  126 

The biggest variations in excretion were associated with ERY (Table S1).  There is a large amount of 127 

information on how much of these drugs is removed in sewage treatment but the data can vary 128 

considerably, for example, ERY removal data ranged from 0 to79% (Table S2). 129 

Table 2 

 Summary of loss rates used in the modelling for the antibiotics following receipt of national consumption 
rates.  Expected is the median whilst best and worst are the extremes reported in the literature   

Losses CIP losses SUF losses TRI losses ERY losses 
Expected 
excretion (%) 

35 18 46 17 

Worst case 
excretion (%) 

45 30 60 45 

Best case 
excretion (%) 

25 10 43 2.5 

Expected 
removal (%) 

76 48 24 36 

Worst case 
removal (%) 

61 0 0 0 

Best case 
removal (%) 

90 75 69 79 

 130 
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So the effluent concentrations are predicted by taking the drug consumption per capita for a specific nation 131 

less that prevented from being excreted as the free parent compound less that removed in sewage 132 

treatment.  The effluent concentration (W, in ng/L) is derived as follows for a specific nation: 133 

W= (C x E x (1−R)
D

 134 

Where C is the substance consumption (ng/cap/d); E is the substance amount not excreted (ng/cap/d); R is 135 

the amount of the drug that is prevented from escaping into sewage effluent (ng/cap/d); and D is the 136 

volume of wastewater ( L/cap/d). 137 

2.4.  Scenario analysis 138 

There are uncertainties in the model parameters determining effluent concentrations.  Firstly, drug 139 

popularity can wax and wane from year to year, and there will be some seasonal trends.  Where a national 140 

consumption was not known a European average was used.  Then there are the uncertainties regarding the 141 

amount excreted (Table S1) and removed in sewage treatment (Table S2 and 2).  In order to encompass the 142 

range of these variables, a series of scenarios were run to cover likely effluent and river concentrations 143 

based on the diverging literature values. These scenarios were a best case (low excretion, high sewage 144 

removal); a worst case (high excretion, low removal) and an expected case, which used the average values 145 

for these parameters.  Thus, the best to worst case should encompass the range of possible effluent and 146 

river concentrations (Table 2).  Seasonal use variation would be difficult to add to the scenarios because 147 

different antibiotics might be more, or less, popular in different seasons, which could vary between different 148 

countries. 149 

When comparing the predicted effluent concentrations calculated using the values from Tables 2, S1 150 

and S2 with those reported in the literature for different nations, the expected or best case predictions were 151 

frequently closest to reported values (Table 3).  Thus, it might be expected that using the worst case scenario 152 

would overestimate river concentrations. 153 

Table 3   

Comparing expected, worst and best case predicted to measured effluent concentrations for ciproflaxacin 
(CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY). 



10 
 

Compound Country Scenario Consumption 
(mg/cap/d) 

Wastewater 
discharge 
(L/cap/d) a 

Predicted 
effluent 
conc. (ng/L) 

Measured 
effluent 
conc. 
(ng/L) 

Reference 

CIP 
Europe Expected 0.652 176 311 

20-95 
(Golet et al., 2003; Lindberg et al., 
2005; Miege et al., 2009) Worst 0.652 176 844 

Best 0.652 176 50 

SUF 

Spain Expected 0.633 208 285 
438 

(Carballa et al., 2004) 
Worst 0.633 208 913 
Best 0.633 208 76 

Switzerland Expected 0.853 328 243 
280 

(Gobel et al., 2005) 
Worst 0.853 328 778 
Best 0.853 328 65 

Sweden Expected 0.440 205 201 
70-233 

(Bendz et al., 2005; Lindberg et al., 
2005; Wahlberg et al., 2011) Worst 0.440 205 644 

Best 0.440 205 54 

TRI 

UK Expected 0.597 274 762 
128-271 

(Ashton et al., 2004; Roberts and 
Thomas, 2006) Worst 0.597 274 1307 

Best 0.597 274 403 
Switzerland Expected 0.193 328 205 

200 
(Gobel et al., 2005) 

Worst 0.193 328 352 
Best 0.193 328 108 

ERY 

UK Expected 1.82 274 1238 
109-832 

(Ashton et al., 2004; Gardner et al., 
2013a; Roberts and Thomas, 2006) Worst 1.82 274 5119 

Best 1.82 274 96 
Switzerland Expected 0.066 328 45 

80-150 
(Gobel et al., 2005; McArdell et al., 
2003) Worst 0.066 328 186 

Best 0.066 328 3 
aBased on  the water consumption for European countries from Eurostat Water statistics 154 
(http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Water_statistics) for the UK wastewater 155 
discharge was derived from a study of 20 STPs in the UK (Williams et al., 2012). 156 

 157 

2.5.  European river water modelling 158 

To estimate concentrations of these antibiotics throughout European surface waters, the spatially-159 

explicit water resources model GWAVA was used in a water quality mode (Dumont et al., 2012; Meigh et al., 160 

1999) as recently used to examine cytotoxic drugs (Johnson et al., 2013).  This model considers the location 161 

and size of the human population and their association with STPs.  The effluents from these STPs are 162 

incorporated with other natural and artificial flows  together with abstractions into the hydrological model.  163 

The hydrology of the model is driven by monthly climate over the period 1970-2000.    The per-capita 164 

effluent loads used in the model were derived as described previously (Table 2).  The model views Europe as 165 

a series of grid squares (cells) of approximately 6 x 9 km (5 by 5 Arc minutes).   Finding an appropriate spatial 166 

scale inevitably involves some compromise between practicality and sufficient precision (Dumont et al., 167 

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Water_statistics
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2008) but for obtaining a pan-European or national impression this scale should yield a representative 168 

picture.  Where a water course passes through a cell, 372 separate monthly concentrations are estimated, 169 

based on the 31 year monthly climate dataset and taking into account the upstream input. GWAVA can also 170 

modify the concentrations along the river network by including a water column biodegradation rate.  171 

However, in this case the antibiotics were assumed to be conservative once in the river due to limited 172 

biodegradation rate information.  This assumption that the antibiotics will be conserved in the rivers means 173 

the predictions will be precautionary (a bias towards overestimation).  Nitrogen, phosphorus, and carbon 174 

concentrations predicted by GWAVA have been extensively compared to measured concentration time-series data 175 

from across Europe. Whilst concentrations near the mouths of large river basins were found to be generally 176 

underestimated, apart from this, there was no systematic over- or underestimation (Dumont et al., 2012).  177 

3. Results and discussion 178 

3.1.  The impact of different variables 179 

It is possible to review the different factors that could affect the final predictions (Table 4).  This 180 

approach traces changes in concentration from sewer to effluent by looking at what influence the highest 181 

and lowest excretion and sewage treatment removal would have on that concentration expressed as an X-182 

fold difference.  The overall difference is the excretion difference multiplied by the sewage treatment 183 

removal difference.  The greatest variation in consumption across Europe was for TRI and ERY.  The biggest 184 

range in apparent excretion of the parent molecule was for TRI.  There were large uncertainties found in 185 

apparent sewage removal of SUF, TRI and ERY.  When the impact of the variables on the final effluent 186 

concentration are summed up, it is clear that ERY would have the greatest uncertainty (Table 4). 187 

 188 

Table 4  

 Summary of the variables and their potential effects on the estimated effluent concentrations for 
ciproflaxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erthromycin (ERY). 

Drug Range in 
consumption 
across EU 

Mean, highest & 
lowest patient 
excretion values 
(%) 

Effect on 
sewage 
influent 
conc. 

Weighted mean, 
highest & 
lowest sewage  
removal (%) 

Effect on 
sewage 
effluent 
conc. 

Overall difference 
between best and worst 
case 
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CIP 4.4-fold 35 (25-45) 1.8-fold 76 (70-90) 3-fold  5.4-fold 
SUF 36-fold 18 (10-30) 3-fold 48 (0-75) 4-fold 12-fold 
TRI 226-fold 46 (43-60) 1.4-fold 16 (0-58) 3.2-fold 4.5-fold 
ERY 78-fold 17 (3-45) 15-fold 36 (0-79) 71-fold 1065-fold 
 189 

3.2.  Predicted European river antibiotic river concentrations 190 

The distribution of concentrations around Europe is dependent not just on the local geography and 191 

hydrology but also on the national drug consumption.  The spatial variation in surface water concentrations 192 

can be seen in annual average maps for TRI and SUF (Figs. 1 and 2) where the interplay of population 193 

distribution, available river dilution and drug popularity can be revealed.  It highlights, for example, that TRI 194 

is not popular in Spain compared to its European partners (Table 1), whilst SUF is very popular in Germany 195 

but much less so in the UK (Table 1).  The map also reveals the consistent benefits of relatively low 196 

population densities and high available dilution in the Scandinavian countries and others such as Ireland and 197 

Greece, as predicted by others (Keller et al., 2014) 198 

 199 

 200 

Fig. 1. Annual average predicted sulfamethoxazole (SUF) concentrations across European surface waters 201 
based on expected case scenario (lowest excretion rate and highest sewage treatment removal)  202 
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 203 

 204 

Fig. 2. Predicted annual average trimethoprim (TRI) concentrations across European surface waters 205 
based on expected case scenario (lowest excretion rate and highest sewage treatment removal)  206 

The complete range of concentrations predicted in the model across Europe can be shown using cumulative 207 

frequency curves (Fig 3 and 4) and compared against the lowest reported effect levels for wildlife (Table 5).  208 

Each point indicates the percentage of cells (Y -axis) having a concentration exceeding a specific level (X-209 

axis).   The curves do not start from 100% as around 25% of European rivers are considered to have no 210 

sewage input.  With the expected scenario, predicted annual-average antibiotic concentrations range 211 

between 0 and 10 ng/L in 90 % by length of surface waters (Fig. 3).  It should be clarified that each cell 212 

generates 372 results per simulation (based on the 31 years of monthly climate data) and from these a 213 

mean, median or percentile can be selected.  For the worst case scenario (high excretion and poor removal) 214 

and taking the 90%ile for each cell estimated concentrations could reach between 0.1 and 1 µg/L in the most 215 

exposed river length for all 4 antibiotics (Fig 4).    216 

3.3.  Comparing predicted and measured river antibiotic concentrations 217 
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Antibiotics monitored in European rivers fall within the predicted range of concentrations by the 218 

modelling (Table 5 and S3), however, the SUF and TRI values tended to fall within the upper percentile of 219 

that predicted by the model.  Perhaps this should be expected, as many field sampling campaigns looking for 220 

these compounds would focus on urbanised areas during lower summer flows.  In addition, the use of these 221 

products in veterinary medicine might increase river concentrations on occasion (Borriello, 2013; Kools et al., 222 

2008).    223 

 224 

 225 

Fig. 3. Predicted mean concentrations for ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) 226 
and erthromycin (ERY) in the expected case scenario across the whole European continent from the 227 
GWAVA model plotted as cumulative frequency curves.  Vertical lines labelled LREC are the lowest 228 
reported harmful effect concentrations on aquatic wildlife. 229 

 230 

 231 

 232 

Fig. 4. Predicted 90th percentile concentrations for ciprofloxacin (CIP), sulfamethoxazole (SUF), 233 
trimethoprim (TRI) and erthromycin (ERY) in surface water for the worst case scenario across the whole 234 
European continent from the GWAVA model plotted as cumulative frequency curves. 235 
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 236 

 237 

3.4.  The potential for widespread  toxicity from antibiotics in European rivers 238 

  These four antibiotics appear to have little or no toxicity to fish or Daphnia species (Table 5).  But 239 

harmful effects can be seen with the duck weed group which appear to be the most sensitive organisms to 240 

SUF.  The most sensitive species for the other antibiotics seem to be cyanobacteria followed by green algae 241 

with effects observed in the tens of µg/L.  Fortunately, it would seem that the antibiotic concentrations 242 

measured in regular domestic effluent were all below the median effect levels of the most sensitive species.  243 

This indicates that these antibiotics at current levels of consumption are not posing a widespread acute toxic 244 

threat to European aquatic wildlife. The CIP and ERY predicted and observed river concentrations appear to 245 

be closest to the EC50 levels but still 2 orders of magnitude lower.  Trimethoprim appears to be of the least 246 

concern, with concentrations predicted to be around 6 orders of magnitude below algal effect levels 247 

followed by SUF with 3 orders of magnitude difference.  We cannot comment on to what extent such river 248 

concentrations might stimulate antibiotic resistance.249 
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Table 5   

Comparison of harmful effect concentrations for freshwater organisms reported in the literature for ciprofloxacin, sulfamethoxazole, trimethoprim and 
erythromycin against predicted and observed and river concentrations 

Ciprofloxacin 
Toxicity to aquatic wildlife Observed and predicted European river concentrations 
Fish NOEC 
(µg/L) 

Cladoceran 
NOEC or 
fecundity 
EC50 (µg/L) 

Duckweed EC50 
(µg/L) 

Cyanobacteria or 
green algae EC50 
(µg/L) 

Observed river 
(µg/L) 

River predicted 
Worst case 90%ile 
(µg/L)* 

River predicted 
Expected mean 
(µg/L)* 

10,000, 
100,000 

13,000, 
60,000 

62, 203, 698 8, 10,1,500, 
3,000, 18,700 

<0.01-0.12 0-0.07 0-0.04 

a, b a, c b, d, e a, b, e, f k, l This study This study 
Sulfamethoxazole 

Toxicity to aquatic wildlife Observed and predicted European river concentrations 
Fish NOEC  Cladoceran  Duckweed EC50 

(µg/L) 
Cyanobacteria or 
green algae EC50 
(µg/L) 

Observed river 
(µg/L) 

River predicted 
Worst case 90%ile 
(µg/L) 

River predicted 
Expected mean 
(µg/L) 

NA*2 NA 81 1,530, 112,000, 
130,000 

<0.01-0.06 0-0.23 0-0.04 

NA NA d g, h l, m, n, o, p, q, r, s, t, u, v, w, x, y, 
z, aa 

This study This study 

Trimethoprim 
Toxicity to aquatic wildlife Observed and predicted European river concentrations 
Fish NOEC 
(µg/L) 

Cladoceran 
EC50 (µg/L) 

Duckweed No 
effect (µg/L) 

Cyanobacteria or 
green algae EC50 
(µg/L) 

Observed river 
(µg/L) 

River predicted 
Worst case 90%ile 
(µg/L) 

River predicted 
Expected mean 
(µg/L) 

100,000 123,000 >1000 11,000, 80,300, 
110,000, 150,000 

<0.01-0.18 0-0.23 0-0.06 

a a d a, g, i l, n, o, q, r, s, t, u, x, ab This study This study 
Erythromycin 

Toxicity to aquatic wildlife Observed and predicted European river concentrations 
Fish  Cladoceran Duckweed No Cyanobacteria or Observed river River predicted River predicted 
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EC50 (µg/L) effect (µg/L) green algae EC50 
(µg/L) 

(µg/L) Worst case 90%ile 
(µg/L) 

Expected mean 
(µg/L) 

NA 210,600 >1000 23, 35, 37, 60 <0.01-0.35 0-0.6 0-0.06 
NA j d f, g, i n, q, r, s This study This study 
a (Halling-Sorensen et al., 2000), b (Robinson et al., 2005), c (Martins et al., 2012), d (Brain et al., 2004), e (Ebert et al., 2011), f (Liu et al., 2011), g (Eguchi et 250 
al., 2004), h (Lutzhoft et al., 1999), i (Ando et al., 2007), j (Didelupis et al., 1992), k (Pena et al., 2007), l (Tamtam et al., 2008), m (Banzhaf et al., 2013), n 251 
(Dinh et al., 2011), o (Fernandez et al., 2010), p (Garcia-Galan et al., 2011), q (Gros et al., 2007), r (Kasprzyk-Hordern et al., 2007), s (Kasprzyk-Hordern et al., 252 
2008), t (Madureira et al., 2010), u (Martin et al., 2011), v (Nodler et al., 2011), w (Pailler et al., 2009), x (Zhou et al., 2009), y (Houtman et al., 2013), z (Loos 253 
et al., 2009), aa (Loos et al., 2010)  ab (Boxall et al., 2014) 254 

* The range of modelled values are 5%ile to the 95%ile 255 

*2 Information not found 256 
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4. Conclusions 257 

The modelled antibiotic concentrations were within the range of spot sample measurements 258 

reported in European sewage effluent and rivers.  Consumption data showed surprising variations, up to 259 

200-fold between the consumption of different antibiotics in European nations.  These findings reveal for 260 

example that analytical chemists would be much more likely to find TRI in German effluents and rivers than 261 

in Spanish ones since consumption is apparently 100-fold higher.  Given that predicted CIP and ERY antibiotic 262 

river concentrations were only 2-fold below known effect levels for algae, this study endorses the listing of 263 

these antibiotics as pharmaceuticals of concern in reviews on the topic (Besse and Garric, 2008; Christensen 264 

et al., 2009; Hughes et al., 2013; Jones et al., 2002; Kaplan, 2013; Ortiz de Garcia et al., 2013).  However, it 265 

seems unlikely that these antibiotics, which have been identified as amongst those of the greatest concern, 266 

are actually causing significant acute toxicity problems today for wildlife on their own.  But, there may be a 267 

case for mixture effects leading to a higher net concern for the antibiotics (Backhaus and Karlsson, 2014).  268 

The question of the promulgation of environmental antibiotic resistance was not addressed in this study, but 269 

the presence of hundreds of ng/L of some antibiotics in high exposure hotspots in European rivers should be 270 

noted. 271 
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Table S1.  

 Proportion of parent drug excreted by patients for ciproflaxacin (CIP), Sulfamethoxazole (SUF), trimethoprim 
(TRI) and erthromycin (ERY) 

Reference CIP excretion (%) SUF excretion (%) TRI excretion (%) ERY excretion (%) 
(Schwartz and 
Rieder, 1970) 

NA*3 15 48 NA 

(Dollery, 1991)* 25-45 30 44-48 2.5 
(Vree and Hekster, 
1987) 

NA 10 NA NA 

(Huschek et al., 
2004) 

NA 15-20  25 

(Straub, 2013) NA NA Up to 60  
(Bryskier et al., 
1993) 

NA NA  12-45 

(McArdell et al., 
2003) 

NA NA  5-10 

(Carballa et al., 
2008) 

 15-30 43 4-10 

(ter Laak et al., 
2010) 

 20 45  

Expected 
excretion*2 

35 18 46 17 

Worst case 
excretion 

45 30 60 45 

Best case 25 10 43 2.5 
*1This reference also gives intra venous excretion rates.  However, in the UK the IV route for antibiotics is 532 
typically less than 1% of the total and so the higher excretion from this route was not considered important. 533 
*2 Calculated as a weighted mean taking into account the number of patients 534 
*3  NA Information not presented or available 535 
 536 

Table S2.  

Proportion of ciproflaxacin (CIP), Sulfamethoxazole (SUF), trimethoprim (TRI) and erthromycin (ERY) 
removed in sewage treatment 

Reference Number of 
STPs 

CIP removal 
(%) 

SUF removal (%) TRI removal 
(%) 

ERY removal 
(%) 

(Roig, 2010) 1 80 NA*2 NA NA 
(Giger et al., 
2003) 

3 81 NA NA NA 

(Golet et al., 
2003) 

1 84 NA NA NA 

(Zorita et al., 
2009) 

1 (n=5) 90 NA NA NA 

(Schaar et al., 
2010) 

1 NA 45 58 48 

(Roberts and 
Thomas, 
2006) 

1 NA NA 3 79 

(Carballa et 
al., 2004) 

1 (n=2) NA 60 (55-65) NA NA 
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(Gobel et al., 
2005) 

2 (n=5) NA 35  0 

(Gobel et al., 
2007) 

2 (n=5) NA 14 (0-60) 8 (0-20) 1 (0-6) 

(Wahlberg et 
al., 2011) 

3 (n=13) NA 45 32 NA 

(Gardner et 
al., 2013b) 

16 NA NA NA 21-42 

(Bendz et al., 
2005) 

1 NA 0 49 NA 

(Xu et al., 
2007) 

2-3 NA 50 (35-65) NA 35 (15-45) 

(Leung et al., 
2012) 

7 NA 70 (65-75) NA 20 (5-45) 

(Miege et al., 
2009) 

(n=4-35) 70 59 16 65 

(Lindberg et 
al., 2005) 

5 (n=10) 87 31 0 NA 

(Straub, 2013) 63 NA NA 30 NA 
(Castiglioni et 
al., 2006) 

6 61 44 NA 0 

(Vieno et al., 
2007) 

12 88 NA NA NA 

(Batt et al., 
2006) 

2 NA 9 25 (1-50) NA 

(Ternes et al., 
2007) 

1 NA 24 69 25 

(Xu et al., 
2007) 

4 NA 24 (0-64) NA 26 

Expected 
removal* 

 76 48 24 36 

Worst case 
removal 

 61 0 0 0 

Best 
removal 

 90 75 69 79 

*Calculated as a weighted mean taking into account the number of STPs in the study 537 
*2  NA Information not presented or available 538 
 539 

 540 

Table  S3.   

Comparing predicted Europe-wide 90%ile values to measured river concentrations (ng/L) for ciproflaxacin 
(CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erthromycin (ERY). 

Reference location River CIP SUF TRI ERY 

GWAVA 90%ile expected case 
scenario (mean value)*1 Europe all 

19 27 45 61 

GWAVA 90%ile worst case 
scenario (mean value)*1 Europe all 

30 83 76 216 
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(Zhou et al., 2009) England Sussex Ouse NA*2 6 to 10 NA NA 

(Boxall et al., 2014) England Not stated NA NA 0.8-50 NA 

(Kasprzyk-Hordern et al., 2008) Wales Taff & Ely 
NA 0 to 4 0 to 183 

0 to 
351*3 

(Kasprzyk-Hordern et al., 2007) Wales Taff NA <0.5 <1.5 0-22*3 

(Kasprzyk-Hordern et al., 2007) Poland Warta NA 26-60 0 to 27 <0.5 

(Banzhaf et al., 2013) Luxembourg Mess NA 3 NA NA 

(Pailler et al., 2009) Luxembourg Mess/Alzette NA 0-22 NA NA 

(Martin et al., 2011) Spain Guadalquivir NA LOD LOD NA 

(Garcia-Galan et al., 2011) Spain Ebro NA 30 median NA NA 

(Gros et al., 2007) Spain Ebro NA 4 to 45 3 to 17 4 to 34 

(Fernandez et al., 2010) Spain Madrid area NA 7 12 NA 

(Pena et al., 2007) Portugal Mondego 
80-
119 

NA NA NA 

(Madureira et al., 2010) Portugal Douro NA 0 to 53 0 to 16 NA 

(Dinh et al., 2011) France Seine NA 4 to 25 0 to 8 0 to 4 

(Tamtam et al., 2008) France Seine 
Below 

10 
23 to 69 11 to 27 NA 

(Nodler et al., 2011) Germany Leine NA 61 median NA NA 

(Loos et al., 2010) Hungary Danube NA 16 median NA NA 

 (Loos et al., 2009) Europe several NA 15 median NA NA 

(Houtman et al., 2013) Holland Meuse 
NA 20 median 

4 
median 

NA 

*1This is the 90%ile value from the 372 simulations per cell.  The mean is derived from the 177,000 cells 541 
covering the landmass of Europe 542 
*2  NA Information not presented or available 543 
*3  erythromycin-H2O is a metabolite of erythromycin 544 
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