194 research outputs found

    Key Biofouling Organisms in Tidal Habitats Targeted by the Offshore Renewable Energy Sector in the North Atlantic Include the Massive Barnacle Chirona hameri

    Get PDF
    Marine habitats are being targeted for the extraction of offshore renewable energy (ORE) as part of the drive to decarbonise electricity generation. Unmanaged biofouling impacts ORE devices and infrastructure by elevating drag forces, increasing weight, and accelerating corrosion, leading to decreased performance and survivability, and extending costly periods of maintenance. ORE deployments in high tidal flow locations are providing opportunities to study the biofouling unique to these habitats. In this study, surveys of numerous devices and associated infrastructure deployed at the European Marine Energy Centre in Scotland identified high tidal flow fouling assemblages. Substrate orientation relative to tidal flow appears to affect the abundance of key fouling species, including the massive barnacle Chirona hameri. This species is shown to recruit to a wide range of artificial substrates, over a prolonged period from mid-spring to mid-summer, and in maximum current speeds from 0.4–4.0 m/s. For the first time, C. hameri is reported in near-surface depths, on uncoated components of a floating tidal device. The highly gregarious settlement behaviour and rapid growth exhibited by this species may have important implications for managing fouling in the ORE industry, especially in ‘niche’ areas. Anti-fouling strategies and maintenance scheduling applicable to ORE and other marine industries are discussed

    Imparting structural robustness of metal-organic cages based on oxo-dimolybdenum clusters

    Get PDF
    A family of robust and stable molybdenum-based metal-organic cages have been obtained based on the [Mo2O2(Ό2-O)2]2+ secondary building unit. The resulting cages are decorated with different pyrdine derivatives that impart structural stability, resulting in the structural elucidation of the activated cage with single-crystal diffraction. The chemical robustness of the cage is also demonstrated by the post-synthetic modification of the cage, which allows the exchange of the pyridine derivatives without rupture of the cage

    Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Meditteranean ozone levels during the hot summer of 2007

    Get PDF
    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions, closely followed by the effect of reduced dry deposition caused by closing of the plants’ stomata at very high temperatures. The impact of high temperatures on the ozone chemistry was much lower. The results suggest that forest fire emissions, and the temperature effect on biogenic emissions and dry deposition, will potentially lead to substantial ozone increases in a warmer climate

    Vancomycin-induced Henoch-Schönlein purpura: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Henoch-Schönlein purpura is a small-vessel systemic vasculitis. Although its exact pathophysiology remains unknown, Henoch-Schönlein purpura has been reported in association with various medical conditions including hypersensitivity. We report the case of a patient with vancomycin-induced Henoch-Schönlein purpura.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian man who had previously undergone a heart transplant was diagnosed as having an intra-abdominal abscess after he underwent a Hartmann procedure. At 15 days after initiation of antibiotic therapy including vancomycin, he developed a purpuric rash of the lower limbs, arthralgia, and macroscopic hematuria. At that time, our patient was already on hemodialysis for end-stage renal disease. Henoch-Schönlein purpura was diagnosed. After a second 15-day course of vancomycin, a second flare of Henoch-Schönlein purpura occurred. Skin biopsies showed leucocytoclastic vasculitis with IgA deposits and eosinophils in the peri-capillary inflammatory infiltrate, suggesting an allergic mechanism. After vancomycin was stopped, we did not observe any further flares. Only five cases of isolated cutaneous vasculitis, one case of lupus-like syndrome and one case of Henoch-Schönlein purpura after vancomycin treatment have been described to date in the literature.</p> <p>Conclusions</p> <p>Clinicians should be aware that systemic vasculitis can be induced by some treatments. Vancomycin is a widely prescribed antibiotic. Occurrence of rare but serious Henoch-Schönlein purpura associated with vancomycin requires its prompt discontinuation.</p

    Activated protein C improves LPS-induced cardiovascular dysfunction by decreasing tissular inflammation and oxidative stress.

    Get PDF
    BACKGROUND:: Recombinant human activated Protein C (APC) is used as an adjunctive therapeutic treatment in septic shock. APC seemingly acts on coagulation-inflammation interaction but also by decreasing proinflammatory gene activity, thus inhibiting subsequent production of proinflammatory cytokines, NO and NO-induced mediators, reactive oxygen species production and leukocyte-endothelium interaction. The hemodynamic effects of APC on arterial pressure and cardiac function are now well established in animal models. However, the specific effects of APC on heart and vessels have never been studied. OBJECTIVES:: To investigate the potential protective properties of therapeutic ranges of APC on a rat endotoxic shock model in terms of anti-inflammatory and cytoprotective pathways. DESIGN:: Laboratory investigation. SETTING:: University medical center research laboratory. INTERVENTIONS:: Rats were exposed to lipopolysaccharide (LPS) (10 mg/Kg iv.). Endotoxic shock was treated with infusion of saline with or without APC (33 mug/kg/h) during 4 hrs. Hemodynamic parameters were continuously assessed and measurements of muscle oxygen partial pressures, NO and superoxide anion (O2) by spin trapping, of NF-kappaB, metalloproteinase-9 (MMP-9) and inducible NO synthase (iNOS) by Western blotting, as well as leukocyte infiltration and MMP-9 activity were performed at both the heart and aorta level (tissue). MAIN RESULTS:: APC partially prevented the reduction of blood pressure induced by LPS and improved both vascular hyporeactivity and myocardial performance. This was associated with a decreased up-regulation of NF-kappaB, iNOS and MMP-9. LPS-induced tissue increases in NO and O2 production were decreased by APC. Furthermore, APC decreased tissue leukocyte infiltration/activation as assessed by a decrease in myeloperoxydase and matrix metalloproteinase 9 activity. CONCLUSIONS:: These data suggest that APC improves cardiovascular function i) by modulating the endotoxin induced-proinflammatory/prooxydant state, ii) by decreasing endothelial/leukocyte interaction and iii) by favoring stabilization of the extracellular matrix

    Ozone-CO Correlations Determined by the TES Satellite Instrument in Continental Outflow Regions

    Get PDF
    Collocated measurements of tropospheric ozone (O3) and carbon monoxide (CO) from the Tropospheric Emission Spectrometer (TES) aboard the EOS Aura satellite provide information on O3-CO correlations to test our understanding of global anthropogenic influence on O3. We examine the global distribution of TES O3-CO correlations in the middle troposphere (618 hPa) for July 2005 and compare to correlations generated with the GEOS-Chem chemical transport model and with ICARTT aircraft observations over the eastern United States (July 2004). The TES data show significant O3-CO correlations downwind of polluted continents, with dO3/dCO enhancement ratios in the range 0.4–1.0 mol mol−1 and consistent with ICARTT data. The GEOS-Chem model reproduces the O3-CO enhancement ratios observed in continental outflow, but model correlations are stronger and more extensive. We show that the discrepancy can be explained by spectral measurement errors in the TES data. These errors will decrease in future data releases, which should enable TES to provide better information on O3-CO correlations.Earth and Planetary SciencesEngineering and Applied Science
    • 

    corecore