6,331 research outputs found

    Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei

    Full text link
    We study ground-state energies and charge radii of closed-shell medium-mass nuclei based on novel chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions, with a focus on exploring the connections between finite nuclei and nuclear matter. To this end, we perform in-medium similarity renormalization group (IM-SRG) calculations based on chiral interactions at next-to-leading order (NLO), N2^2LO, and N3^3LO, where the 3N interactions at N2^2LO and N3^3LO are fit to the empirical saturation point of nuclear matter and to the triton binding energy. Our results for energies and radii at N2^2LO and N3^3LO overlap within uncertainties, and the cutoff variation of the interactions is within the EFT uncertainty band. We find underbound ground-state energies, as expected from the comparison to the empirical saturation point. The radii are systematically too large, but the agreement with experiment is better. We further explore variations of the 3N couplings to test their sensitivity in nuclei. While nuclear matter at saturation density is quite sensitive to the 3N couplings, we find a considerably weaker dependence in medium-mass nuclei. In addition, we explore a consistent momentum-space SRG evolution of these NN and 3N interactions, exhibiting improved many-body convergence. For the SRG-evolved interactions, the sensitivity to the 3N couplings is found to be stronger in medium-mass nuclei.Comment: 10 pages, 11 figures, published versio

    Evaluating Energy-based Trait Shifts and Population Level Impacts of Big Brown Bats (Eptesicus fuscus) with Long-term Exposure to Pseudogymnoascus destructans

    Get PDF
    Disturbances in environment can lead to a wide range of host physiological responses. These responses can either allow hosts to adjust to new conditions in their environment or can reduce their survival, and can subsequently cause host traits to shift. Small mammals are particularly vulnerable to stochastic disturbances, like a pathogen introduction, because of their high energy demands. Studies examining host responses to pathogens often focus on species highly susceptible to infection that typically have high mortality rates, leading to a gap in understanding the responses of less susceptible species. My dissertation evaluates the energy balance of Eptesicus fuscus (big brown bats), a species considered less susceptible to the introduced fungal pathogen Pseudogymnoascus destructans (Pd) which causes white-nose syndrome in North American hibernating bats. I quantified changes in body mass, energy expenditures and the abundance of E. fuscus over long-term Pd exposure time. Using 30 years of data for 24,129 individual E. fuscus captures across the eastern US, I found E. fuscus body mass decreased with increasing latitude once Pd was established on the landscape (5+ years). When measuring whole-animal energy expenditures of 19 E. fuscus in lab settings using open-flow respirometry, I found that E. fuscus with long-term exposure to Pd have increases or no change to torpid metabolic rates across a wide range of ambient temperatures. Finally, the overall abundance of E. fuscus increased with Pd exposure, and lactating and post-lactating bats increased abundance with increasing latitude in the eastern US. Taken together, these results suggest that E. fuscus may have a combination of pathogen and intraspecific competitive pressures impacting their populations, particularly in northern latitudes. This dissertation highlights how introduced pathogens can cause spatially variable responses in less susceptible hosts over time, and other ecological pressures may contribute to those responses. Future efforts for understanding the degree of persistence of less susceptible wildlife host populations are critical for predicting how and why their populations change following emerging infectious disease outbreaks and epidemics

    Functional implications of the intertarsal joint shape in a terrestrial ( Coturnix coturnix ) versus a semi-aquatic bird ( Callonetta leucophrys )

    Get PDF
    International audienceAs birds have a diversity of locomotor behaviors, their skeleton is subjected to a variety of mechanical constraints (gravitational, aerodynamic and sometimes hydrodynamic forces). Yet, only minor modifications in post-cranial skeleton shape are observed across the diversity of avian species in comparison with other vertebrates. The goal of this study was to explore potential morphological adjustments that allow locomotion in different habitats in Anatidae. Specifically, we compared a strictly terrestrial bird, the common quail Coturnix coturnix, and a semi-aquatic bird, the ringed teal Callonetta leucophrys, to explore whether their anatomy reflects the constraints of locomotion in different habitats (water vs. land). We compared the tibiotarsus and the tarsometatarsus shape between the two species using a geometric morphometric approach. Our data illustrate distinct differences between species with a more medially oriented intertarsal joint in the ringed teal than in the common quail, which may be linked to the kinematics of walking and paddling. This study lays the foundations to understand the functional requirements for moving in both terrestrial and aquatic environments in Anatidae, and suggests morphological characteristics of the bird hindlimb skeleton that may help to predict the motions it is capable of

    Structure of the lightest tin isotopes

    Full text link
    We link the structure of nuclei around 100^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50N=Z=50), to nucleon-nucleon (NNNN) and three-nucleon (NNNNNN) forces constrained by data of few-nucleon systems. Our results indicate that 100^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of 101^{101}Sn based on three-particle--two-hole excitations of 100^{100}Sn, and reproduce the small splitting between the lowest Jπ=7/2+J^\pi=7/2^+ and 5/2+5/2^+ states. Our results are consistent with the sparse available data.Comment: 8 pages, 4 figure

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,
,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,
,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case

    Long-Term Exposure to an Invasive Fungal Pathogen Decreases Eptesicus fuscus Body Mass With Increasing Latitude

    Get PDF
    Abstract Invasive pathogens threaten wildlife health and biodiversity. Physiological responses of species highly susceptible to pathogen infections following invasion are well described. However, the responses of less susceptible species (relative to highly susceptible species) are not well known. Latitudinal gradients, which can influence body condition via Bergmann\u27s rule and/or reflect the time it takes for an introduced pathogen to spread geographically, add an additional layer for how mammalian species respond to pathogen exposure. Our goal was to understand how hosts less susceptible to pathogen infections respond to long‐term pathogen exposure across a broad latitudinal gradient. We examined changes in body mass throughout pathogen exposure time across the eastern United States (latitude ranging 30.5° N–44.8° N) in Eptesicus fuscus, a bat species classified as less susceptible to infection (relative to highly susceptible species) by the invasive fungal pathogen that causes white‐nose syndrome, Pseudogymnoascus destructans (Pd). Using 30 years of spring through fall adult capture records, we created linear mixed‐effects models for female and male bats to determine how mass or mass variation changed across the eastern United States from pre‐Pd invasion years through Pd invasion (0–1 years with Pd), epidemic (2–4 years with Pd), and established years (5+ years with Pd). By Pd establishment, all female and male bats decreased body mass with increasing latitude across a spatial threshold at 39.6° N. Differences in bat mass north and south of the spatial threshold progressively increased over Pd exposure time‐steps such that body mass was lower in northern latitudes compared to southern latitudes by Pd establishment. Results indicated that the progressive differences in E. fuscus body mass with latitude across the eastern United States are due to long‐term pathogen exposure; however, other environmental and ecological pressures may contribute to decreases in E. fuscus body mass with latitude and long‐term pathogen exposure. As pathogen introductions and emerging infectious diseases become more prevalent on the landscape, it is imperative that we understand how less susceptible species directly and indirectly respond to long‐term pathogen exposure in order to maintain population health in surviving species

    Assessing deep learning reconstruction for faster prostate MRI:visual vs. diagnostic performance metrics

    Get PDF
    Objective: Deep learning (DL) MRI reconstruction enables fast scan acquisition with good visual quality, but the diagnostic impact is often not assessed because of large reader study requirements. This study used existing diagnostic DL to assess the diagnostic quality of reconstructed images. Materials and methods: A retrospective multisite study of 1535 patients assessed biparametric prostate MRI between 2016 and 2020. Likely clinically significant prostate cancer (csPCa) lesions (PI-RADS ≄ 4) were delineated by expert radiologists. T2-weighted scans were retrospectively undersampled, simulating accelerated protocols. DL reconstruction (DLRecon) and diagnostic DL detection (DLDetect) were developed. The effect on the partial area under (pAUC), the Free-Response Operating Characteristic (FROC) curve, and the structural similarity (SSIM) were compared as metrics for diagnostic and visual quality, respectively. DLDetect was validated with a reader concordance analysis. Statistical analysis included Wilcoxon, permutation, and Cohen’s kappa tests for visual quality, diagnostic performance, and reader concordance. Results: DLRecon improved visual quality at 4- and 8-fold (R4, R8) subsampling rates, with SSIM (range: −1 to 1) improved to 0.78 ± 0.02 (p &lt; 0.001) and 0.67 ± 0.03 (p &lt; 0.001) from 0.68 ± 0.03 and 0.51 ± 0.03, respectively. However, diagnostic performance at R4 showed a pAUC FROC of 1.33 (CI 1.28–1.39) for DL and 1.29 (CI 1.23–1.35) for naive reconstructions, both significantly lower than fully sampled pAUC of 1.58 (DL: p = 0.024, naĂŻve: p = 0.02). Similar trends were noted for R8. Conclusion: DL reconstruction produces visually appealing images but may reduce diagnostic accuracy. Incorporating diagnostic AI into the assessment framework offers a clinically relevant metric essential for adopting reconstruction models into clinical practice. Clinical relevance statement: In clinical settings, caution is warranted when using DL reconstruction for MRI scans. While it recovered visual quality, it failed to match the prostate cancer detection rates observed in scans not subjected to acceleration and DL reconstruction.</p

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material

    Cones, pringles, and grain boundary landscapes in graphene topology

    Full text link
    A polycrystalline graphene consists of perfect domains tilted at angle {\alpha} to each other and separated by the grain boundaries (GB). These nearly one-dimensional regions consist in turn of elementary topological defects, 5-pentagons and 7-heptagons, often paired up into 5-7 dislocations. Energy G({\alpha}) of GB computed for all range 0<={\alpha}<=Pi/3, shows a slightly asymmetric behavior, reaching ~5 eV/nm in the middle, where the 5's and 7's qualitatively reorganize in transition from nearly armchair to zigzag interfaces. Analysis shows that 2-dimensional nature permits the off-plane relaxation, unavailable in 3-dimensional materials, qualitatively reducing the energy of defects on one hand while forming stable 3D-landsapes on the other. Interestingly, while the GB display small off-plane elevation, the random distributions of 5's and 7's create roughness which scales inversely with defect concentration, h ~ n^(-1/2)Comment: 9 pages, 4 figure
    • 

    corecore