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Abstract
Objective Deep learning (DL) MRI reconstruction enables fast scan acquisition with good visual quality, but the
diagnostic impact is often not assessed because of large reader study requirements. This study used existing
diagnostic DL to assess the diagnostic quality of reconstructed images.

Materials and methods A retrospective multisite study of 1535 patients assessed biparametric prostate MRI between
2016 and 2020. Likely clinically significant prostate cancer (csPCa) lesions (PI-RADS � 4) were delineated by expert
radiologists. T2-weighted scans were retrospectively undersampled, simulating accelerated protocols. DL reconstruction
(DLRecon) and diagnostic DL detection (DLDetect) were developed. The effect on the partial area under (pAUC), the Free-
Response Operating Characteristic (FROC) curve, and the structural similarity (SSIM) were compared as metrics for diagnostic
and visual quality, respectively. DLDetect was validated with a reader concordance analysis. Statistical analysis included
Wilcoxon, permutation, and Cohen’s kappa tests for visual quality, diagnostic performance, and reader concordance.

Results DLRecon improved visual quality at 4- and 8-fold (R4, R8) subsampling rates, with SSIM (range: −1 to 1) improved to
0.78 ± 0.02 (p< 0.001) and 0.67 ± 0.03 (p< 0.001) from 0.68 ± 0.03 and 0.51 ± 0.03, respectively. However, diagnostic
performance at R4 showed a pAUC FROC of 1.33 (CI 1.28–1.39) for DL and 1.29 (CI 1.23–1.35) for naive reconstructions, both
significantly lower than fully sampled pAUC of 1.58 (DL: p= 0.024, naïve: p= 0.02). Similar trends were noted for R8.

Conclusion DL reconstruction produces visually appealing images but may reduce diagnostic accuracy. Incorporating
diagnostic AI into the assessment framework offers a clinically relevant metric essential for adopting reconstructionmodels into
clinical practice.

Clinical relevance statement In clinical settings, caution is warranted when using DL reconstruction for MRI scans. While it
recovered visual quality, it failed to match the prostate cancer detection rates observed in scans not subjected to acceleration
and DL reconstruction.

Key Points
● Increasing demand for prostate MRI requires ongoing optimisation of MR techniques to maximise efficiency while
maintaining accuracy.

● Deep learning reconstruction models may reduce diagnostic performance at 4- and 8-fold subsampling rates.
● Automated quantifiable metrics focused on diagnostic quality are recommended when evaluating DL reconstruction methods in MRI.
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Introduction
Magnetic resonance imaging (MRI) has experienced
significant growth in clinical use, evidenced by a more
than threefold increase in procedures from 1997 to 2006
[1]. This upward trend continues, especially with the
ongoing exploration into MRI’s role in prostate cancer
screening [2]. This expansion highlights the need for
faster, more efficient MRI techniques in response to
the growing demand. Deep learning reconstruction
(DLRecon) offers a promising avenue for accelerating
MRI acquisitions and increasing capacity. However,
these models are typically trained and validated using
conventional image quality metrics (ImagQMs), such as
the structural similarity (SSIM) and the peak signal-to-
noise ratio (PSNR). Unfortunately, these ImagQMs focus
solely on visual quality and poorly align with visual
quality assessments by radiologists [3]. However, it is
vital to note that visual quality, whether assessed com-
putationally or by a radiologist, does not address the
primary goal of diagnostic imaging: disease detection
and characterisation.
A concern with optimising DLRecon models based on

ImagQMs is the introduction of ‘hallucinatory effects’—
artificial image artifacts or distortions not present in the
original data [4]. These hallucinations can significantly
compromise the diagnostic integrity of the images,
potentially leading to misrepresentations or omissions of
clinically relevant features. Furthermore, while theoreti-
cally feasible for quality assessment, traditional reader
studies by radiologists face practical limitations due to
their time-consuming nature and the variability of readers
[5]. Hallucinations are uncommon, so adequately analys-
ing their effect requires large reader studies, rendering
them infeasible in common daily testing practice.
We propose to use currently available diagnostic AI to

assess the impact on diagnostic accuracy. By employing
DL detection models (DLDetect), we aim to develop a
diagnostic quality metric (DiagQM) more aligned with
clinical relevance than traditional ImagQMs. This
DiagQM addresses the key limitations of reader studies by
efficiently handling large datasets and minimising reader
variability, while also providing a quantifiable measure of
hallucinatory effects. We hypothesise that our DLDetect
models can discern decreases in diagnostic accuracy
caused by hallucinations. In addition, in case there are
negative diagnostic implications of DLRecon, as indicated
by the reduced diagnostic performance of DLDetect
models, we hypothesise a radiologist will validate these
diagnostic inconsistencies.

Materials and methods
Datasets
This study, approved by an institutional review board,
waived the need for informed consent. It involved ret-
rospective data from three medical centres: University
Medical Centre Groningen (UMCG, Groningen, The
Netherlands) between 2014 and 2020, Martini Hospital
Groningen (MHG, Groningen, The Netherlands)
between 2013 and 2020, and Radboud University Med-
ical Centre (RUMC, Nijmegen, The Netherlands) in the
year 2016. All patients were suspected of having clini-
cally significant prostate cancer (csPCa) based on cri-
teria such as suspicious digital rectal examinations,
lower urinary tract symptoms, or elevated prostate-
specific antigen levels.
The collected data comprises either biparametric or

multiparametric prostate MRI examinations obtained for
routine clinical care. The biparametric protocol included
a Turbo Spin Echo T2-weighted (T2W) sequence (see
Supplementary Material 1, Table 1), high b-value
(≥ 1400 s/mm2) diffusion-weighted imaging, and an
apparent diffusion coefficient map. The study comprised
357, 572, and 846 patients from the UMCG, MHG, and
RUMC cohorts, respectively. Exclusions were made for
studies that did not follow the PI-RADSv2 [6] MRI pro-
tocol requirements or for patients with prior prostate
treatment. The external RUMC dataset was subjected to
the same exclusion criteria before data transfer. After
exclusions, the final sample included 1535 patients, of
which 733 (~48%) had PI-RADS 4 or higher, comprising
305 from UMCG, 384 from MHG, and 846 from RUMC.
This study focused on T2W sequences for DLRecon-

based prostate MRI for specific reasons. T2W imaging is
the dominant sequence for transitional zone lesions and is
crucial for morphological assessment, lesion localisation,
and guiding procedures like biopsies. By concentrating
on T2W sequences, we aim to assess DLRecon’s impact
on anatomical representation without functional data
from diffusion-weighted imaging, which PI-RADS desig-
nates as the primary sequence for peripheral lesions.
Expert uroradiologists with 4–25 years of experience

assigned PI-RADS scores and delineated all (likely) csPCa
lesions (defined as a PI-RADS score ≥ 4), serving as the
reference standard [7–9].

Retrospective undersampling in K-space
T2W acquisitions (DICOMs) were retrospectively
undersampled. The slices were converted to the frequency
domain, commonly referred to as k-space, using a fast
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Fourier transform (FFT). The k-space acquisition is
known to be time-intensive, especially during the acqui-
sition of phase-encoding lines. An approach to accelerate
the acquisition is to acquire fewer phase-encoding lines,
leading to aliasing artefacts in reconstructed images.
During the processing of raw k-space data, zero-filling is
commonly applied before conversion into an image to
achieve higher spatial resolution and a smoother appear-
ance. To take the zero-filling into account, we utilised a
binary mask to capture the k-space regions that were
acquired. Following this, zero-padding was added to the
binary mask in a manner analogous to the zero-filling
typically applied to acquired k-space data. Finally, the
reconstruction from the undersampled data uses the
inverse of the FFT shift, followed by the inverse fast
Fourier transform (IFFT), to convert the masked k-space
back to the image domain.
The k-space undersampling mask was designed to sub-

sample the row-based phase-encoding (horizontal) direc-
tion (Fig. 1), making it compatible with the multicentre
dataset. Research has shown that fully sampling the centre
of k-space, which corresponds to low spatial frequencies,
improves the signal-to-noise ratio and yields favourable
ImagQMs [10]. On the other hand, sampling in the per-
iphery of k-space helps preserve high-resolution details and
sharp edges, essential for representing small anatomical
structures. We used a 20% central and 80% peripheral

k-space undersampling scheme for optimal balance. In
practical terms, for a 4-fold (R4) undersampling where 25%
of k-space is sampled, 20% of the samples would be drawn
from the centre and the remaining 80% from the periphery.
This approach aimed to maximise diagnostic utility by
enabling the detection of small-sized lesions characterised
by high-frequency information while maintaining overall
image quality.

The reconstruction model
For the DLRecon model, we adopted the 3D U-Net [11]
architecture, which is widely used for image-based data
(see Supplementary Material 2, Fig. 1a). The dataset
contains 1535 DICOM images, each with its corre-
sponding PI-RADS segmentation. Due to the absence of
multicoil k-space data, we used simulated k-space to carry
out image space-based reconstruction tailored for lesion
detection algorithms. Therefore, employing an image
space-based U-Net is driven by the need to compute a
DiagQM through the performance of a subsequent csPCa
DLDetect model.
The DLRecon model inputs a centre-cropped, under-

sampled, and aliased image. The objective is to recover lost
details and eliminate aliasing artefacts from k-space
undersampling. The training is performed on 4- and
8-fold (R4 and R8) subsampling rates. Specific training
parameters include SSIM for the loss function, a batch size
of 12, and an Adam optimiser with a 4e–4 learning rate.
Additionally, early stopping was used to reduce the risk of
overfitting. During training, data augmentation included
rotations (25% probability,−30 to 30 degrees), the addition
of normally distributed noise (60% probability, 0–0.003
range), and mirroring (50% probability). Training com-
pleted within 48 hours on a 32-GB Tesla V100 GPU using
the Keras software libraries. The code is available on
GitHub (Repo: ProstateMRI-DLReconVsDiagMetrics).
The data for the DLRecon model is preprocessed in four

steps: k-space synthesis combined with undersampling,
resampling, centre cropping, and normalisation. First, the
image is undersampled with the binary subsampling mask.
Next, the image undergoes resampling using nearest
neighbour interpolation to achieve 0.5 × 0.5 mm voxel
spacing, leaving the z-direction unchanged. Subsequently,
the image dimensions are standardised through centre
cropping (256, 256, 16). Lastly, instance-wise min/max
normalisation (scaled between 0 and 1) ensures uniform
pixel values, improving model generalisation.

The detection model
To evaluate the clinical utility of DL reconstructions, we
deployed a specialised 3D U-Net [9], distinct from the
reconstruction model, solely focused on locating likely
csPCa (Fig. 2) in T2W scans (see SupplementaryMaterial 2,

Fig. 1 Illustrating a 512x512 2D binary k-space mask with R8
undersampling, employing a 20% central sampling approach. The phase-
encoding direction, which is row-based in our multicentre dataset, was
undersampled using an exponential random distribution for peripheral
k-space lines. Consequently, blurring in the horizontal direction is
observed, indicated by the orange arrow
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Fig. 1c for model architecture). The model has an attention
mechanism and squeeze-and-excitation layer to improve
feature learning [9, 12]. Specifically, the model was tailored
for T2W scans to exclude diffusion-weighted imaging,
apparent diffusion coefficient, and dynamic contrast-
enhanced sequences, ensuring an unbiased evaluation of
the diagnostic quality of T2W sequences. The model gen-
erates a 3D heatmap, assigning each voxel a likelihood of
csPCa. The training employed a weighted binary cross-
entropy loss function. Class weights were set to 0.05 and
0.95 for the negative and positive classes, respectively, to
address the class imbalance and to prioritise lesion features
over the background tissue. We employed 5-fold

cross-validation on 80% of the dataset, reserving 20% as a
test set. The highest-performing models from each vali-
dation fold were stored. These models were used to eval-
uate the diagnostic quality of DL-reconstructed T2W MRI
scans in the test set. In our methodology, we chose not to
retrain the DLDetect models for each acceleration,
reflecting the reality in clinical practice where radiologists
do not undergo specific retraining for each new technique.
This approach prevents the models from normalising hal-
lucination effects—false positives or negatives due to
reconstruction—which could mask true diagnostic
accuracy.
Preprocessing data for the diagnostic DLDetect models

involved resampling, centre cropping, and z-normalisation.
Images were resampled to a consistent voxel spacing
(0.5, 0.5, 3.0) mm across the multicentre dataset, with a crop
size of (180, 180, 16) to focus on the prostate. A larger crop
was used in the reconstructionmodel as the additional field of
view could enhance its performance. Instance-wise z-score
normalisation standardised voxel values to amean of zero and
standard deviation of 1. Data augmentation included a
10% probability of rotation (−30 to 30 degrees), a 30%
probability of adding normally distributed noise (0–0.001
multiplier), and a 50% probability of horizontal flipping.

Experiments
Our study involved two experiments that evaluated the
impact of DLRecon on visual and diagnostic quality using
ImagQMs and a DiagQM. See Fig. 2 for a flowchart of the
reconstruction and evaluation pipelines. The first experi-
ment employed a Wilcoxon test to statistically assess the
visual quality of reconstructions, focusing on SSIM as the
ImagQM. The SSIM ranges from−1 to 1, with 1 indicating
identical visual quality to the reference image and lower
values indicating decreased quality. We analysed recon-
struction quality recovery on two subsampling factors, R4
and R8, using both naïve and U-Net-based reconstruction
methods. Here, naïve reconstruction refers to inversion
from subsampled k-space.
The second experiment evaluated how effectively diag-

nostic DLDetect models could recognise likely csPCa in
reconstructed MR images. Diagnostic accuracy was
measured using free-response operating characteristic
(FROC) analysis, a methodology used to evaluate a sys-
tem’s lesion detection sensitivity alongside the false-
positive rate, as a patient can have multiple lesions.
Within this framework, the diagnostic accuracy metric
used was the partial area under the curve (pAUC) of the
FROC curve. Specifically, the study employed pAUC
values ranging between 0.1 and 2.5 false positives per
patient as the DiagQM.
A permutation test compared the pAUC between R4

and R8 subsampling factors across both reconstruction

Fig. 2 Overview of the Prostate MRI Reconstruction and likely csPCa
Detection Pipeline. The workflow begins with the original T2W MRI (a),
which either proceeds unchanged to the csPCa detection model or
undergoes k-space undersampling at accelerations R4/R8 (b), resulting in
an accelerated image (c). Following DL reconstruction (DLRecon) via a 3D
U-Net, the improved image (d) is run through a DL detection (DLDetect)
model to assign csPCa likelihood to each voxel (e). The SSIM compares
images (a) and (d) visually, while diagnostic accuracy for likely csPCa is
assessed using (e) across accelerations R1/R4/R8, aided by PI-RADS
annotations from a radiologist
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methods. With true positives requiring a 10% overlap with
ground truth lesions [9, 13], we aimed to demonstrate
non-inferior diagnostic performance (DiagQM) and
visual quality (ImagQMs) compared to fully sampled
MRI (R1). From the 1535 scans, we designated
80% (N= 1229) exclusively for training and validation,
employing five-fold cross-validation. The remaining 20%
(N= 306) constituted a different unseen separate held-out
test set for final evaluation. This data-splitting method
was consistently applied for the DL reconstruction and
detection models. In addition to these quantitative
metrics, we also qualitatively investigated the manifesta-
tion and impact of hallucinatory effects in the recon-
structed images.

Hallucination validation
We conducted a small reader study to validate the
DLDetect as a proxy for assessing the diagnostic quality of

DLRecon. We selected a balanced set of 30 cases from our
test set based on their DLetect observed differences in
csPCa likelihood. Comprising 15 cases with the highest
difference in PCa detection (the ‘Inconsistent Set’) and
15 with the lowest difference (the ‘Consistent Set’).
An experienced radiologist (> 8 years) reviewed R1 vs.

R4/R8 image pairs, categorising them as consistent,
showing minor variation, or inconsistent. Cohen’s kappa
analysis compared radiologist’s and DLDetect’s ability to
agree on observed inconsistencies (hallucinations). For a
detailed explanation of the study’s methodology and
findings, please refer to Supplementary Materials 3.

Results
The first experiment (Fig. 3) demonstrated that DLRe-
con significantly improved the visual quality compared to
the naïve (IFFT) reconstruction on the test set (N= 306).
Specifically, SSIM values improved in 4-fold subsampled

Fig. 3 Violin plot comparing ImagQMs SSIM and PSNR across 306 test cases. This showcases the performance of two reconstruction methods: naïve
(IFFT) and DLRecon (U-Net) methods at subsampling factors R4 and R8
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data from IFFT data: 0.78 ± 0.02 vs. 0.68 ± 0.03 (p < 0.001),
and for R8 data: 0.67 ± 0.03 vs. 0.51 ± 0.03 (p < 0.001).
The second experiment (Fig. 4) revealed diminished

diagnostic performance in R4 and R8 reconstructions
compared to fully sampled R1 data of the test set
(N= 306). Specifically, pAUC values for R4 were 1.29 (CI
1.23–1.35) for naïve and 1.33 (CI 1.28–1.39) for U-Net,
both significantly lower than the 1.58 (CI 1.52–1.64) for
R1 data. Permutation tests confirmed these differences
(naïve p= 0.02, U-Net p= 0.024). A similar pattern was
observed for R8.
We further assessed the diagnostic performance of

DLDetect models in spotting likely csPCa using both
DLRecon and naïve reconstructions. As shown in Fig. 4,
no significant disparities were observed between
these methods in either R4 (pAUC 1.33 [CI 1.28–1.39]
vs. 1.29 [CI 1.23–1.35], p= 0.37) or R8 (pAUC
1.12 [CI 1.07–1.17] vs. 0.95 [CI 0.89–1.01], p= 0.067).
Nonetheless, a sensitivity reduction of at least 10% was
observed compared to fully sampled R1 data.
In addition to a lesion-based analysis, a patient-based

receiver operating characteristic analysis of our test set
revealed AUC values of 0.87 for R1 and 0.78 for R4. Using
an optimal threshold of 0.76, we found sensitivity for R1
and R4 to be 0.84. Specificity decreased in R4 (0.54)
compared to R1 (0.75), causing the positive predictive
value to drop from 0.74 in R1 to 0.61 in R4. The negative
predictive value decreased from 0.85 to 0.81. These
findings highlight a trade-off in DL reconstructions,
maintaining sensitivity but with lower specificity.

Figure 5 (top row) provides an example of a hallucina-
tory effect induced by the DLRecon. In this specific
instance, the hallucination led the DLDetect model to
predict a lesion not present in the corresponding fully
sampled R1 image. The reconstructed image displayed a
subtle discontinuity in peripheral zone intensity (marked
by the orange circle), a characteristic commonly linked to
transition zone lesions. These findings underscore the risk
of ‘hallucination effects’ influencing diagnostic models,
leading to false-positive or false-negative detections and
reduced model sensitivity while producing visually
appealing images.
In the reader study, Cohen’s kappa values indicated a

low to moderate agreement between the radiologist’s
evaluations and the DLDetect models, with a kappa of
0.2 (CI: −0.097 to 0.5) for R4 and 0.4 (CI: 0.079 to 0.72)
for R8. These findings are visually represented in Sup-
plementary Materials 3, Fig. 1.

Discussion
In this study, we developed a novel evaluation metho-
dology for the diagnostic effectiveness of DLRecon tech-
niques in MRI that can be effortlessly scaled to
accommodate large datasets. We incorporated diagnostic
AI into the assessment method, creating a benchmark
(DiagQM) to assess the diagnostic reliability alongside the
conventional ImagQMs, like the SSIM and PSNR. Speci-
fically, we found that while conventional ImagQMs may
yield visually appealing results, the diagnostic accuracy
seems affected, especially at higher subsampling rates.
This limitation is exemplified by a DL hallucination that
led to a false-positive detection (Fig. 5).
The reader study revealed a moderate alignment

between radiologists’ evaluations and DLDetect models in
identifying diagnostic inconsistencies introduced by
DLRecon. The concordance suggests that detection
models could enhance DLRecon evaluation methods.
However, while promising, these findings also underscore
the indispensable role of radiologists in validating AI
interpretations, particularly in complex diagnostic situa-
tions requiring nuanced judgment. As hypothesised,
evaluating DLRecon with DLDetect models yielded
meaningful insights into the diagnostic performance of
DLRecon models in contrast to conventional ImagQMs.
The disparity between ImagQMs and DiagQMs under-
scores the necessity to shift from purely visual evaluation
metrics to those that matter for clinical decision-making.
In this context, DiagQMs serve as an example, empha-
sising the importance of evaluating a DLRecon model’s
capability to display pathological features accurately.
In addition to the results presented in this study, it is

worth noting that existing, state-of-the-art DLRecon
models [14–17] rely heavily on ImagQMs (e.g., SSIM),

Fig. 4 FROC curves for likely csPCa detection performance. This figure
presents FROC curves for DLRecon using U-Net and IFFT methods. The
curves are plotted on a logarithmic scale to depict false-positive lesions
per patient and include 95% confidence intervals. Data is derived from a
multisite test set of 306 cases. The legend includes pAUC values, serving
as the DiagQM, with R1 as the baseline detection AI trained on fully
sampled MRI
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which, as demonstrated in our study, may not be the most
appropriate approach. The anticipated influx of DLRecon
models from various vendors for clinical practice in the
near future underscores the heightened significance of
recognising the limitations associated with visual metrics.
In addition to offering more meaningful insights,
DiagQMs enable rapid throughput to examine large
datasets. Our proposed assessment method, using
DLDetect models, required less than 30 minutes of com-
puting time to evaluate a total of 918 cases across three
acceleration factors (R1, R4 and R8). In contrast, a radi-
ologist would require significantly more time, at least up
to 2–3 weeks, to perform a similar assessment.
Our study resonates with the findings of the fastMRI

challenge, which applied DLRecon models to subsampled
k-space brain data [4]. In this challenge, the primary
evaluation metric was SSIM, while a secondary assess-
ment was performed by radiologists using a 5-point Likert
scale to rate visual quality. Although SSIM scores typically
correlated with positive radiologist evaluations, the radi-
ologists observed hallucination effects, where DLRecon

models altered specific brain abnormalities to mimic
normal structures. Unlike the fastMRI challenge, which
relies on incidental findings by radiologists, our metho-
dology introduces a quantifiable metric for diagnostic
accuracy, making our approach well-suited for large
datasets.
Our study had certain limitations. First, we relied on

retrospective k-space subsampling from DICOMs, a
method that utilises image space data rather than multi-
coil k-space data. Consequently, the results of this study
should be validated in future research using multicoil
k-space data. It is worth noting that the use of image
space data is an accepted approach in many studies
[18–23] due to the limited availability of raw k-space data.
Secondly, our study was limited to T2W sequences,

omitting functional imaging, such as diffusion-weighted
imaging, essential for comprehensive PCa evaluation.
Future work should include these modalities in DL
models for reconstruction and detection. Thirdly, the
reader study agreement was moderate. The side-by-side
comparison by a reader is different in some cases from

Fig. 5 Demonstrating hallucinatory effects in DL reconstruction (DLRecon). The top row highlights a false-positive detection, where the detection model
(DLDetect) incorrectly identifies a lesion in the R4 DLRecon—marked by the red overlay—which was not present in the original unaccelerated (R1)
image, indicating a hallucination effect that introduces a new lesion post-reconstruction. The bottom row presents a false negative case: a lesion
detected by DLDetect in the original R1 image is not identified in the R4 reconstructed image, illustrating a hallucination effect where a true lesion is
obscured following the reconstruction process
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the independent AI assessments. However, in retrospect,
AI identified reconstruction hallucinations and showed
image degradation that was supportive of diagnostic
differences.
To the best of our knowledge, despite the abundance

of high-performing and well-validated DLDetect models
available [24, 25], none have been used to evaluate the
diagnostic accuracy of DLRecon models, as was the case
in this study. These DLDetect models are inherently
designed to streamline diagnostic tasks into a single,
quantifiable quality metric, making them well-suited for
evaluating DLRecon methods. Future research could
consider a more balanced approach that combines the
DiagQM with human experts, ensuring that both com-
ponents continue to play integral roles in the diagnostic
process. This synergy between automated diagnostic
metrics and the expertise of human radiologists holds
the potential to further enhance the accuracy and
reliability of medical image reconstructions and
interpretations.

Conclusion
DL reconstruction produces visually appealing images but
may reduce diagnostic accuracy. Incorporating diagnostic
AI into the assessment framework offers a clinically
relevant metric essential for adopting reconstruction
models into clinical practice.

Abbreviations
AI Artificial intelligence
csPCa Clinically significant prostate cancer
DiagQM Diagnostic quality metric
DL Deep learning
DLDetect Deep learning detection
DLRecon Deep learning reconstruction
FFT Fast Fourier transform
FROC Free-response operating characteristic
IFFT Inverse fast Fourier transform
ImagQM Image quality metric
pAUC Partial area under the curve
PCa Prostate cancer
PSNR Peak signal-to-noise-ratio
SSIM Structural similarity index measure
T2W T2-weighted
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