290 research outputs found

    IgE-Mediated Hypersensitivity Reactions to Cannabis in Laboratory Personnel

    Get PDF
    Background: There have been sporadic reports of hypersensitivity reactions to plants of the Cannabinaceae family (hemp and hops), but it has remained unclear whether these reactions are immunologic or nonimmunologic in nature. Objective: We examined the IgE-binding and histamine-releasing properties of hashish and marijuana extracts by CAP-FEIA and a basophil histamine release test. Methods: Two workers at a forensic laboratory suffered from nasal congestion, rbinitis, sneezing and asthmatic symptoms upon occupational contact with hashish or marijuana, which they had handled frequently for 25 and 16 years, respectively. Neither patient had a history of atopic disease. Serum was analyzed for specific IgE antibodies to hashish or marijuana extract by research prototype ImmunoCAP, and histamine release from basophils upon exposure to hashish or marijuana extracts was assessed. Results were matched to those of 4 nonatopic and 10 atopic control subjects with no known history of recreational or occupational exposure to marijuana or hashish. Results: Patient 1 had specific IgE to both hashish and marijuana (CAP class 2), and patient 2 to marijuana only (CAP class 2). Controls proved negative for specific IgE except for 2 atopic individuals with CAP class 1 to marijuana and 1 other atopic individual with CAP class 1 to hashish. Stimulation of basophils with hashish or marijuana extracts elicited histamine release from basophils of both patients and 4 atopic control subjects. Conclusions: Our results suggest an IgE-related pathomechanism for hypersensitivity reactions to marijuana or hashish. Copyright (C) 2011 S. Karger AG, Base

    Expression of the B7/BB1 Activation Antigen and its Ligand CD28 in T-Cell-Mediated Skin Diseases

    Get PDF
    Interactions of CD28 (on T cells) with its recently identified ligand B7/BB1 (on antigen-presenting cells) have been shown to activate T cells via a major histocompatibility complex/Ag-independent “alternative” pathway, leading to an amplification of T- cell – mediated immune responses. The in vivo relevance of these molecules for cutaneous immunity is presently unknown. These findings prompted us to study the expression of B7/BB1 and CD28 in normal human skin and in selected T-cell – mediated inflammatory skin diseases. Biopsies were obtained from lesional skin of patients with allergic contact dermatitis, lichen planus, and, as control, from basal cell carcinoma and from healthy controls. Serial cryostat sections were stained with a panel of MoAbs directed against CD28, B7/BB1, CD3, CD1a, and KiM8 using immunohistochemistry (ABC technique). CD28 expression was observed in the majority of dermal and epidermal CD3+ T cells in contact dermatitis and lichen planus. In normal skin and basal cell carcinoma, CD28 was expressed only occasionally by perivascular T cells. In allergic contact dermatitis and lichen planus, B7/BB1-expression was found on dermal dendritic cells, on dermal macrophages, on Langerhans cells, focally on keratinocytes, and occasionally on dermal T cells. No B7/BB1 immunoreactivity was detected in normal skin and basal cell carcinoma. These findings indicate that T-cell – mediated skin diseases are accompanied by an influx of CD28+ T cells and an upregulation of B7/BB1 on cutaneous antigen- presenting cells, keratinocytes, and on some T cells. We speculate that “alternative” T cell-activation via the B7/CD28 pathway may contribute to the pathogenesis of these skin diseases

    Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations

    Get PDF
    In many pattern forming systems that exhibit traveling waves, sources and sinks occur which separate patches of oppositely traveling waves. We show that simple qualitative features of their dynamics can be compared to predictions from coupled amplitude equations. In heated wire convection experiments, we find a discrepancy between the observed multiplicity of sources and theoretical predictions. The expression for the observed motion of sinks is incompatible with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur

    Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection

    Full text link
    We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference ΔTc\Delta T_c for Rayleigh-B\'enard convection. The structure factor of the fluctuating convection rolls is consistent with the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to 1/ϵ1/\sqrt{-\epsilon} where ϵΔT/ΔTc1\epsilon \equiv \Delta T / \Delta T_c -1. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file (using uufiles package). Detailed instructions of unpacking are include

    Fetal eye movements on magnetic resonance imaging.

    Get PDF
    OBJECTIVES: Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. METHODS: Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. RESULTS: In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. CONCLUSIONS: In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations

    Phase chaos in the anisotropic complex Ginzburg-Landau Equation

    Full text link
    Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader parameter range than in the isotropic case, and often even broader than in one dimension. They typically represent the global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-dimensional solution. The transition to defect chaos is of intermittent type.Comment: 4 pages RevTeX, 5 figures, little changes in figures and references, typos removed, accepted as Rapid Commun. in Phys. Rev.

    MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine.

    Get PDF
    OBJECTIVES: In cases of "spina bifida," a detailed prenatal imaging assessment of the exact morphology of neural tube defects (NTD) is often limited. Due to the diverse clinical prognosis and prenatal treatment options, imaging parameters that support the prenatal differentiation between open and closed neural tube defects (ONTDs and CNTDs) are required. This fetal MR study aims to evaluate the clivus-supraocciput angle (CSA) and the maximum transverse diameter of the posterior fossa (TDPF) as morphometric parameters to aid in the reliable diagnosis of either ONTDs or CNTDs. METHODS: The TDPF and the CSA of 238 fetuses (20-37 GW, mean: 28.36 GW) with a normal central nervous system, 44 with ONTDS, and 13 with CNTDs (18-37 GW, mean: 24.3 GW) were retrospectively measured using T2-weighted 1.5 Tesla MR -sequences. RESULTS: Normal fetuses showed a significant increase in the TDPF (r = .956; p<.001) and CSA (r = .714; p<.001) with gestational age. In ONTDs the CSA was significantly smaller (p<.001) than in normal controls and CNTDs, whereas in CNTDs the CSA was not significantly smaller than in controls (p = .160). In both ONTDs and in CNTDs the TDPF was significantly different from controls (p<.001). CONCLUSIONS: The skull base morphology in fetuses with ONTDs differs significantly from cases with CNTDs and normal controls. This is the first study to show that the CSA changes during gestation and that it is a reliable imaging biomarker to distinguish between ONTDs and CNTDs, independent of the morphology of the spinal defect

    Influence of through-flow on linear pattern formation properties in binary mixture convection

    Full text link
    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure

    Finite size effects near the onset of the oscillatory instability

    Get PDF
    A system of two complex Ginzburg - Landau equations is considered that applies at the onset of the oscillatory instability in spatial domains whose size is large (but finite) in one direction; the dependent variables are the slowly modulated complex amplitudes of two counterpropagating wavetrains. In order to obtain a well posed problem, four boundary conditions must be imposed at the boundaries. Two of them were already known, and the other two are first derived in this paper. In the generic case when the group velocity is of order unity, the resulting problem has terms that are not of the same order of magnitude. This fact allows us to consider two distinguished limits and to derive two associated (simpler) sub-models, that are briefly discussed. Our results predict quite a rich variety of complex dynamics that is due to both the modulational instability and finite size effects
    corecore