339 research outputs found

    MUON FLUX ESTIMATION IN THE ANDES UNDERGROUND LABORATORY

    Get PDF
    The ANDES Underground Laboratory is being planned and designed to be one of the largest and most shielded laboratories in the Southern Hemisphere, which will be located in the Andes Range, in the area of the current Paso AguaNegra that connects the provinces of San Juan (Argentina) and Elqui (Chile). The diversity of experiments that are being planned, including experiments for the direct and indirect search of dark matter and neutrino precision physics, requires a precise knowledge of the flux of high-energy atmospheric muons within the laboratory. These are produced during the interaction of astroparticles with energies between 1012 and 1018eV denominated of high and ultra-high energy withthe Earth’s atmosphere. In the high-energy component, muons with energies of tens of TeV can be found, capable of passing through thousands of meters of rock. Previous estimates made from reasonable assumptions about the type of rock expected in the area showed that the expected muon flux was compatible with other underground laboratories at an equivalent depth. In this work, extensive atmospheric showers flux simulations were performed at the laboratory site.Afterwards, there was a selection of those muons with sufficient energy to reach the laboratory based on their angle of incidence and the height at which they enter the mountain. Then a transfer function was modeled using the new geological studies currently available that allow us to have a detailed model of the rock distribution inside the mountain. Finally, the interaction of these muons with the different types of rock was calculated numerically along their way to the laboratory using the continuous slow-down approximation, thus obtaining that the expected muon flux within the laboratory is 1,47±0,02 day−1m−2sr−1

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Recommendations for ophthalmologic practice during the easing of COVID-19 control measures

    Get PDF
    In the context of the COVID-19 pandemic, this paper provides recommendations for medical eye care during the easing of control measures after lockdown. The guidelines presented are based on a literature review and consensus among all Spanish Ophthalmology Societies regarding protection measures recommended for the ophthalmologic care of patients with or without confirmed COVID-19 in outpatient, inpatient, emergency and surgery settings. We recommend that all measures be adapted to the circumstances and availability of personal protective equipment at each centre and also highlight the need to periodically update recommendations as we may need to readopt more restrictive measures depending on the local epidemiology of the virus. These guidelines are designed to avoid the transmission of SARS-CoV-2 among both patients and healthcare staff as we gradually return to normal medical practice, to prevent postoperative complications and try to reduce possible deficiencies in the diagnosis, treatment and follow-up of the ophthalmic diseases. With this update (5th) the Spanish Society of Ophthalmology is placed as one of the major ophthalmology societies providing periodic and systematized recommendations for ophthalmic care during the COVID-19 pandemic
    • 

    corecore