1,149 research outputs found

    Helping education undergraduates to use appropriate criteria for evaluating accounts of motivation

    Get PDF
    The aim of the study was to compare students in a control group with those in a treatment group with respect to evaluative comments on psychological accounts of motivation. The treatment group systematically scrutinized the nature and interpretation of evidence that supported different accounts, and the assumptions, logic, coherence and clarity of accounts. Content analysis of 74 scripts (using three categories) showed that the control group students made more assertions than either evidential or evaluative points, whereas the treatment group used evaluative statements as often as they used assertion. The findings provide support for privileging activities that develop understanding of how knowledge might be contested, and suggest a need for further research on pedagogies to serve this end. The idea is considered that such understanding has a pivotal role in the development of critical thinking

    Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada: Role of Fine‐Particle Grain‐Size Variations

    Get PDF
    Fine‐grained, Ti‐poor titanomagnetite in the ~12.7 Ma Tiva Canyon (TC) Tuff systematically increases in grain size from superparamagnetic (SP) at the flow base to single domain (SD) at a few meters height. This allows us to examine the role of grain‐size variation on paleointensity, within the transition from SP to stable SD. We present magnetic properties from two previously unreported sections of the TC Tuff, as well as Thellier‐type paleointensity estimates from the lowermost ~7.0 m of the flow. Magnetic hysteresis, frequency‐dependent susceptibility, and thermomagnetic data show that sample grain‐size distribution is dominated by SP in the lower ~3.6 m, transitioning upwards to mostly stable SD. Paleointensity results are closely tied to stratigraphic height and to magnetic properties linked to domain state. SD samples have consistent absolute paleointensity values of 28.5 ± 1.94 ÎŒT (VADM of 51.3 ZAm2) and behaved ideally during paleointensity experiments. The samples including a significant SP fraction have consistently higher paleointensities and less ideal behavior but would likely pass many traditional quality‐control tests. We interpret the SD remanence to be a primary thermal remanent magnetization but discuss the possibility of a partial thermal‐chemical remanent magnetization if microcrystal growth continued at T \u3c Tc and/or the section is affected by post‐emplacement vapor‐phase alteration. The link between paleointensity and domain state is stronger than correlations with water content or other evidence of alteration and suggests that the presence of a significant SP population may adversely impact paleointensity results, even in the presence of a stable SD fraction

    Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    Get PDF
    Adult steelhead Oncorhynchus mykiss tagged with archival transmitters primarily migrated through a large river corridor at depths >2 m interspersed with frequent but short (<5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the supersaturated dissolved gas conditions encountered and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon Oncorhynchus tshawytscha study, except O. mykiss experienced greater seasonal variability and were more likely to have depth uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species

    A Highly Potent and Broadly Neutralizing H1 Influenza-Specific Human Monoclonal Antibody

    Get PDF
    Influenza's propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.Peer reviewe

    Kane County water resources investigations : final report on geologic investigations

    Get PDF
    Kane County Water Resources Department, Contract No. 02-279Ope

    Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Get PDF
    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in Îœ\nu detectors, double-ÎČ\beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of 11^{11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8±0.3)×10−4Ό−1g−1cm2(2.8 \pm 0.3) \times 10^{-4} \mu^{-1} g^{-1} cm^{2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.Comment: 16 pages, 20 figure

    Measurement of the 8B Solar Neutrino Flux with the KamLAND Liquid Scintillator Detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.Comment: 6 pages, 3 figure
    • 

    corecore