130,153 research outputs found
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
Vacuum polarization for neutral particles in 2+1 dimensions
In 2+1 dimensions there exists a duality between a charged Dirac particle
coupled minimally to a background vector potential and a neutral one coupled
nonminimally to a background electromagnetic field strength. A constant uniform
background electric current induces in the vacuum of the neutral particle a
fermion current which is proportional to the background one. A background
electromagnetic plane wave induces no current in the vacuum. For constant but
nonuniform background electric charge, known results for charged particles can
be translated to give the induced fermion number. Some new examples with
infinite background electric charge are presented. The induced spin and total
angular momentum are also discussed.Comment: REVTeX, 7 pages, no figur
The Transmission Property of the Discrete Heisenberg Ferromagnetic Spin Chain
We present a mechanism for displaying the transmission property of the
discrete Heisenberg ferromagnetic spin chain (DHF) via a geometric approach. By
the aid of a discrete nonlinear Schr\"odinger-like equation which is the
discrete gauge equivalent to the DHF, we show that the determination of
transmitting coefficients in the transmission problem is always bistable. Thus
a definite algorithm and general stochastic algorithms are presented. A new
invariant periodic phenomenon of the non-transmitting behavior for the DHF,
with a large probability, is revealed by an adoption of various stochastic
algorithms.Comment: 16 pages, 7 figure
Shape optimization of damping layers
Shape optimization of unconstrained and constrained damping layers is completed. The specific problem analyzed is a cantilever beam loaded at its tip by a harmonic force. Finite element modeling and mathematical programming techniques are used to obtain the solution. Performance measures are taken to be reduction of maximum diplacement and increase in fatigue lifetime. Results include the improvement, over the uniform treatment case, of these measures when the profile of the damping layer is optimized
Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses
We present theoretical calculations for polarization and ellipticity of
high-order harmonics from aligned N, CO, and O molecules generated
by linearly polarized lasers. Within the rescattering model, the two
polarization amplitudes of the harmonics are determined by the
photo-recombination amplitudes for photons emitted parallel and perpendicular
to the direction of the {\em same} returning electron wave packet. Our results
show clear species-dependent polarization states, in excellent agreement with
experiments. We further note that the measured polarization ellipse of the
harmonic furnishes the needed parameters for a "complete" experiment in
molecules.Comment: 4 pages, 4 figure
Effect of temperature-dependent shape anisotropy on coercivity with aligned Stoner-Wohlfarth soft ferromagnets
The temperature variation effect of shape anisotropy on the coercivity,
HC(T), for the aligned Stoner-Wohlfarth (SW) soft ferromagnets, such as fcc Ni,
fcc Co and bcc Fe, are investigated within the framework of Neel-Brown (N-B)
analysis. An extended N-B equation is thus proposed,by introducing a single
dimensionless correction function, the reduced magnetization, m(\tao) =
MS(T)/MS(0), in which \tao = T/TC is the reduced temperature, MS(T) is the
saturation magnetization, and TC is the Curie temperature. The factor, m(\tao),
accounts for the temperature-dependent effect of the shape anisotropy. The
constants, H0 and E0, are for the switching field at zero temperature and the
potential barrier at zero field, respectively. According to this newly derived
equation, the blocking temperature above which the properties of
superparamagnetism show up is described by the expression, TB =
E0m^2(\tao)/[kBln(t/t0)], with the extra correction factor m^2(\tao). The
possible effect on HC(T) and the blocking temperature, TB, attributed to the
downshift of TC resulting from the finite size effect has been discussed also.Comment: 22 pages, 2 figures, 1 table, Accepted by Phys. Rev.
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building
This study presents the experimental measurement of the energy consumption of three top-floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in the hot-summer and cold-winter zone of China, to examine the energy performance of white and sedum-tray garden roofs. The energy consumption of the three rooms was measured from September 2014 to September 2015 by monitoring the energy performance (temperature distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air temperature. The rooms had the same construction and appliances, except that one roof top was black, one was white, and one had a sedum-tray garden roof. This study references the International Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms with the sedum-tray garden roof and with the white roof were 25.0% and 20.5%, respectively, as compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were −9.9% and −2.7%, respectively, in the winter. Furthermore, Annual conditioning energy savings of white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also identified to have a significant effect on the energy savings of the sedum-tray garden roof
Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules
Present photoionization experiments cannot measure molecular frame
photoelectron angular distributions (MFPAD) from the outermost valence
electrons of molecules. We show that details of the MFPAD can be retrieved with
high-order harmonics generated by infrared lasers from aligned molecules. Using
accurately calculated photoionization transition dipole moments for
fixed-in-space molecules, we show that the dependence of the magnitude and
phase of the high-order harmonics on the alignment angle of the molecules
observed in recent experiments can be quantitatively reproduced. This result
provides the needed theoretical basis for ultrafast dynamic chemical imaging
using infrared laser pulses.Comment: 5 pages, 4 figure
- …