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Shape optimization of unconstrained and constrained damping

layers is treated. The specific problem analyzed is a

cantilever beam loaded at its tip by a harmonic force.

Finite element modeling and mathematical programming

techniques are used to obtain the solution. Performance

measures are taken to be reduction of maximum displacement

and increase in fatigue lifetime. Results include the

improvement, over the uniform treatment case, of these

measures when the profile of the damping layer is optimized.

INTRODUCTION

Treatment of vibration problems by damping layers, both constrained and uncon-

strained is quite common. Early work in the field can be found in Ross, Ungar and

Kerwin [i]. More recently, finite element techniques have been used to address the

problem. Papers relevant to the present work are those of Johnson, Kienholz and

Rogers [2], Johnson and Kienholz [3], Soni and Bogner [4], and Soni [5].

Advances have also been made recently on the structural optimization front.

Improvements in design sensitivity analysis were given by Kim, Anderson and

Sandstrom [6]. Shape optimization techniques using pure finite element modeling

were presented by Kikuchi, Chung, Torigaki and Taylor [7]. Of note is the work of

Niordson [8], who showed the importance of imposing a slope constraint in the opti-

mum design of elastic plates. Viscoelastic materials have also been treated. A

study quite closely related to the theme of the present paper was given by Lekszycki

and Olhoff [9], who analyzed shape optimization of an elastic beam covered by an

unconstrained viscoelastic layer. Using calculus of variation techniques, they

obtained an explicit optimality condition, which was solved in an iterative fashion.

Here shape optimization is considered for both constrained and unconstrained

layers on a beam. A key question addressed is, for a given volume of material,

how much improvement can be obtained, over the uniform treatment case, if the profile

of the damping layer is allowed to vary and be optimized. The specified problem

treated involves a cantilever beam loaded at its tip by a time harmonic force.

Performance measures are taken to be reduction in maximum displacement, and improve-

ment in fatigue lifetime. Finite element modeling, together with numerical

approaches to the complex eigenvalue problem and mathematical programming techniques
are used to obtain the solution.

It should be noted that complete details are not presented in the paper (these
can be found in [i0]). The work focuses on the essential ideas and on the results.
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MECHANICAL MODELING

Only a single constrained layer is treated here and the basic configuration

is sketched in Fig. i. The mechanical modeling used is traditional. The basic
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Figure i. Basic Configuration of a Three-Layered Beam

beam and constraining layer are taken to be Euler-Bernoulli beams and the damping

layer, for which shear is important, is treated as a Timoshenko beam. Perfect

bonding is assumed. With this modeling, the displacement components are given by

U(x,z,t) =

Ul(X,t)-(Z-dl)W,x(X,t), dl-Tl/2_Z_dl+Tl/2, base layer

U2(x,t)_(z-d2)W,x(X,t),d2-T2/2!z!d2+T2/2, covering layer

uC(x,t)-(z-dC)_C(x,t), dC-H/2!z!dC+H/2, damping layer

W(x,z,t) = W(x,t)

(i)

(2)

(3)

(4)
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uC(x,t) = (1/2)(Ul(X,t)+U2(x,t))+(i/4)(T2-Tl)W (5),X

_C(x,t) = (1/H)(Ul(X ,t)-U2(x ,t))-(I/2H)(TI+T2)W (6)
_X

In the above, UI, U2, and U c are the midplane longitudinal displacements of the

base beam, covering layer and core, respectively.

The relevant, non-zero strains are

exl = UI, x - (Z-dl)W,x x (7)

ex2 = U2,x - (z-d2)W,xx (8)

eCx = (UI,x+U2,x)/2+(TI-T2)W,xx/4 + (Z-dc)[U2,x-Ul,x)/H + (TI+T2)W,xx/2H ] (9)

c __cy = + W ,dC-H/2_z_dC+H/2 (i0)
_X

XZ

For the base beam and covering layer, the stress strain relations are

Oxl = Elexl (ii)

_x2 = E2Cx2 (12)

where E denotes Young's modulus. The damping layer is treated as a Kelvin solid,

for which the stress-strain relations are

O c = ECe c + c _c
x x _i x (13)

c c c ql c -cO Yxz (14)xz = G Yxz +

C C

where G c stands for the shear modulus of the core and _1 ' q] are matermal
parameters characterizing the viscoelasticity. For harmonic-loading, such as is

being considered here, the complex modulus approach is adopted. Then

* "C
C_ c = E e (15)
x x

c * c
= G y (16)

XZ Xg

where

G = complex shear modulus of the damping layer

= GC(l+i_ c) (17)
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E = complex Young's modulus of the damping layer
= EC(l+i_ c) (18)

where nc and _c are the loss factors for the damping material. For harmonic motion

of frequency _, the relationships between the Kelvin parameters and the loss

factors are

GC = EC/(2(l+_C)) (19)

c c _/G c (20)
n = n I

_c : _Ic _/E c (21)

In the sequel, following Nashif, Jones and Henderson [ii], Poisson's ratio _c

is taken to be a constant.

Equations (i) through (21) essentially set forth the mechanical modeling.

The procedure then is straightforward. The principle of virtual work states:

+ dv + 6VI - 6V = 0 (22)f(Ox6_x °xz6_xz) s
v

where _V I and _V s denote virtual work by the inertia forces and surface tractions,
respectively. Using eqs. (i) through (21) in eq. (22) leads to an integral expres-

sion involving the "degrees of freedom" UI, U2, W, _W/_x. This expression is then
discretized using a finite element method? Note that similar modeling can be done

for an arbitrary number of layers.

FINITE ELEMENT MODELING

Using eqs. (I) through (6), it can be shown that the volume integrals in

eq. (22) reduce to line integrals in the x-direction. These integrals are then

discretized using finite elements of length L . Rod elements are used for axial
displacements. Specifically, the shape functzons are given by:

Ui(x ) = [(l-X/Le) X/Le][(Ui I Ui2)] T (23)

where i = I, 2 indicate base beam and covering layer, respectively, and U_, U_

are nodal displacements. Beam elements are used to handle the transverse deforma-

tions, with shape functions given by

T

W (x) = [N1 N 2 N 3 N4][WI OI W 2 02 ] (24)

_w
where 0 E _x' and
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N1 = i - 3x2/L 2 + 2x3/L 3e e

N2 = x - 2x2/L + x3/L 2e e

N3 = 3x2/L 2 _ 2x3/L 3e e

N4 = _ (x2/L e - x3/Le2) (25)

Again in eq. (24), superscripts indicate nodal quantities.
Standard finite element methodology now applies. For harmonic forcing the

procedure ultimately leads to, on assembling the various element matrices,

2
- to [M]X + i[C] X + [K] X = F (26)

where X is a vector of nodal parameters and F is a vector of nodal forces (magni-

tudes)? The stiffness, mass and damping matrices, [K], [M], and [C] are lengthy,

but straightforward expressions and will not be reproduced here. Note that the

form i[C] for the damping matrix, which is frequency dependent, arises from use

of the complex modulus approach.

FATIGUE LIFE TIME CALCULATIONS

Here the approach set forth in the SAE document, Ref. [12] is followed. In

reality localized plastic flow occurs in fatigue and the nominal stresses and

strains, o and E, should be replaced by the actual quantities S and e. Neuber

introduced the following empirical rule
2

max
e = SE (27)

This equation has two unknowns, e and S, and the other needed relationship is

the cyclic stress-strain curve for the material, which is curve-fitted by

i

s rS n'
e = E+ _K'" (28)

where K' and n' are material parameters. Eqs. (27) and (28) are then solved

iteratively to obtain S . The number of cycles to failure Nf is calculatedma
from another empirical re_ationshmp, namely:

!

= _f 2NfSmax ( )b (29)

!

where _ and b are material parameters. Later in the paper an aluminum alloy
(AL3015_ is studied and for this material the parameters are

399



E = 1.0 x 104 ksi

K' = 28.6 ksi

n' = 0.093

' = 38.4 ksi
Uf

b = -0.088

OPTIMIZATION PROBLEM

The optimization task is to find a vector b of design variables Ho, i = 1,2..

...n, where H. is the thickness of the damping layer in the ith finitelelement,
.1. .

which will mznxmlze the objective function f, here taken to be"

f: min (maxlRj I) j = 1,2, ..... N,

where R. represents the deflection response at node j, subject to the constraints:
]

volume constraint of damping layer V0 - V = 0

and inequality constraints:

H u
1

- H > O, where H. u is an upper bound for H.:
i - z z

slope constraints:

3H.
]- (30)

H -. •I _x I _> 0, H a specified constant.v v

The constraint on the gradient in eq. (30) needs some explanation. The idea

was introduced by Niordson [8] in a study on optimization of elastic plates. He

pointed out that without it, exotic shapes (tending towards ribbed structures,

with extremely thin stiffeners) would be generated. Apart from the practicality

of such structures, the underlying theory (Kirchoff plate theory) is not valid

for such rapidly varying shapes. To preserve the underlying theory, he restricted

the design space to plates of slowing varying thickness, by means of a slope

constraint.

In the current work, the numerical approach requires that the constraints be

differentiable. Hence the slope constraints are replaced by the equivalent state-

ments:

400



_H.
H + _>0v _x- (31)

_H.
H 1>0
v _x - (32)

One remark should be made. For some unconstrained layers, it was found that

the slope constraints were not necessary to obtain smooth shapes. However, the

constraints were found to be essential for constrained layers.

Mathematical programming techniques are used here to obtain the solution. A

proven, reliable technique is employed. Belegundu and Arora [13] showed that the

program SUMT has these features. Moreover, a listing is available in Kuester [14].

To use the program, sensitivity derivatives Ui(bo) are required, where

_X

Ui(bo) = _--_. , i = 1,2, ..... (33)
1

b=b

Partial differentiation of eq. (26) can be shown to give

{_ 2 [M] + i [C] + [K]}U. = R
-m -p

(34)

where

R E
-p

2 $[M] _[C] _[K]
bFfT-x- i b_V-x- b_fT-_X

l l l

(35)

Note that in the present problems, [M], [K], and [C] have known analytical forms

and the derivatives in eq. (35) can be carried out explicitly. Then eq. (34) has

the same structure as eq. (26) and can be solved in the same fashion once the
latter has been solved.

The constraint equations in problem are simple algebraic expressions and their

sensitivity derivatives can also be readily obtained.

NUMERICAL STRATEGY

Eigenvalue extraction was done by means of a subspace iteration technique

together with Jacobi's method for matrix diagonalization. Response was calculated

using a Gaussian direct elimination method, modified for complex equations. Design

sensitivity coefficients were calculated as discussed in connection with eq. (35).

Their magnitudes are then fed into the optimization scheme SUMT.

PROGRAM VALIDATION AND RESULTS

To check the accuracy of the finite element modeling, several calculations

were done to determine the natural frequencies and loss factors and compared with

results of Soni [5]. The comparisons involved a cantilever aluminum beam (7 inches

long, .5 inches wide and .06 inches deep) with .06 inches thick aluminum face sheets.

The material constants used were E = 1.0 x 10 7 psi and O = 0.i ib/in 3. The core
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material was ISD468. For this material, the behavior of Gc and nc with
frequency is known. Poisson's ratio _c was taken to have the constant value
0.35. It was assumed(also assumedthroughout the paper) that the loss factor
is the samein dilation and shear, so that _c = Nc. Tables 1 and 2 giv_ ¢om-_r_ c
pa_i$ons of the first six undampednatural frequencies and the ratio n2 /n ,

N2 _rJ being the modal loss factor, respectively. Overall, quite good agreement
is seen, lending confidence to the numerical procedures.

Table i. Comparison of Natural Frequencies

Mode Number M. L. Soni [5] (hz) Present Result (hz)

i 64.70 64.13

2 298.00 296.80

3 748.20 745.80

4 1409.50 1403.70

5 2305.00 2296.00

6 3447.00 3400.00

(r)/nC
Table 2. Comparison of the Ratio n2

Mode Number M. L. Soni [5] Present Result

1 0.2725 0.2840

2 0.2401 0.2450

3 0.1531 0.1560

4 0.0878 0.0896

5 0.0560 0.0572

The optimization phase of the program was checked on the following test

problem given by Rosenbrock (see [14]): minimize the objective function f, where

f =-_x2x3, subject to

constraints :

0!xi_42

Oj (Xl+2X2+2x3) j 72

Rosenbrock gave the solution: f = -3456.0, xI = 24, x2 = 12, xB = 12. The present

method gave f = -3453.8, xI = 23.4, x2 = 12.27 x3 = 127 Very gSod agreement is
seen. This, and the fact that the trends in Lekszycki and Olhoff's [9] work were
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reproduced accurately (as will be seen shortly) led to the conclusion that the
program was accurate.

Results for unconstrained layers will now be given.
The first material studied is the one used in [9_, for which the parameters

are: Ec = 0.1xl08 ib/in 2, qc = 0.5, pc = 0.035 ib/in and for the base layer
El = Ec, P = 0.i ib/in3. The dimensions are: TI = 0.06 inches, B (width) = 0.5
inches, L = 7 inches (Soni's example).

Note that this damping material has quite large moduli (perhaps unrealisti-
cally so). Moreover, note that, as in Ref. [9], the effects of shear are
neglected.

A harmonic force is applied at the tip. The thickness constraint H.u is
taken to be 0.32 inches. The initial amount of damping material must beI
specified. A percentage measure is used, namely:

%volume of dampingmaterial = volume of damping material

volume of base layer

Figure 2 shows a result for 100% damping using the present methodology, but

ignoring shear effects. A symmetric configuration is used with equal amounts of

damping material on the top and bottom of the beam. Only the upper layer is shown

in the figure. In fact without a constraining layer, shear effects in the core

are quite small and can always be neglected so that in effect an Euler-Bernoulli

beam is used. The first bending frequency of the composite beam is _n = 595 rad/

sec and the excitation frequency is m = 20 rad/sec, so that we have a case of low

o
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Figure 2. Optimal Shape for High Modulus Material
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frequency excitation. The sametrend as in Ref. [9] is seen. It is interesting
that the present results were obtained without having to specify a constraint on
the slope (true for all the results on the unconstrained layers). It was also
found that the thickness constraint(0.32 inches) was not active.

Table 3 shows the improvements that can be obtained for various damping
treatments. Twokinds of percent reduction in responses are defined by:

Max. response of bare beam - max. response with uniform damping
RRU = Max. response of bare beam

Max. response of bare beam - max. response with optimal damping
RRO = Max. response of bare beam

Table 3. Performance Improvements

Fatigue Life Fatigue Life

% Volume RRU % RRO % Uniform Optimal

i00.0 88.6 93.0 0.1775 x 105 0.8764 x 105

66.6 79.9 87.4 0.6722 x 104 0.4270 x 105

33.3 59.4 72.7 0.235 x 104 0.909 x 104

16.6 38.1 58.3 0.129 x 104 0.5994 x 104

Optimization would seem to be worth the trouble. For example, for 33.3% damping

an improvement (RRO-RRU) of 13.3% is seen. For 100% damping the improvement is

4.4%. Better fatigue performance is also seen. Optimization led to 39.4_iog

value) improvement for 33% damping and 74% improvement for 100% damping.

High frequency excitation was also studied (not treated in Ref. [9]).

Figure 3 shows the optimum shape for _ = 750 rad/sec and 100% damping. It is

interesting to note that the optimum profile has the opposite trend to that for

the low frequency profile.

As a next step in the study, a more realistic material was chosen, namely

LORD-400. This is a medium shear modulus material with parameters obtained from

Ref. [ii]. The natural frequency now is _n = 220 rad/sec (based on 100% damping).

The optimal shape for a low frequency excitation (_ = 20 rad/sec) is shown

in Figure 4, for a 100% damping material and a bound on thickness of 0.24 inches.

Note that the same shape trend is seen, as for the high shear modulus. The thick-

ness changes in Figure 4 are severe and one may question the use of Euler-Bernoulli

beam theory. A smaller upper bound on the thickness constraint was used, namely

0.15 inch,. The result is shown in Figure 5. A different, smoother shape is seen.

This shape dependence on the thickness constraint was not observed for the high

modulus material.
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Using the lower upper bound, the following values were found for performance

improvement: at 100% damping, RRU = 9.0%, RRO = 19.0%; at 66.6% damping RRU =

4.7%, RRO = 12.1%; at 33.3% damping, RRU = 2.4%, RRO = 7.0%. Results on fatigue

are: at 33.3% and 100% damping, the improvements are 5% and 12%, respectively.

Though the gains are not as large as for the high modulus material, optimization

still seems attractive.

A typical result for high frequency excitation (_ = 240 rad/sec) is shown

in Figure 6, for a thickness upper bound of 0.15 inches and 33% damping.

Note that the same shape reversal as was seen for the high modulus material

is found. RRO has the value 24.5% so optimization is also worthwhile at high

frequencies.

Constrained layers will now be treated (for LORD-400). The first item that

should be mentioned is that now a slope constraint is required. Figure 7 shows

a shape obtained without such a constraint. Large oscillatio_in the profile

are seen (as was seen by Niordson [8] in his work on elastic plates). Such shapes

are not acceptable within the framework of the current mechanical modeling. It

was discovered, like Niordson that a slope constraint led to smoother profiles.

A slope constraint was imposed at the element level in the form

Hi+ I - Hil< .25 H °
i = 1,2 ...... N-I

where H ° is the thickness of the original uniform damping layer. The thickness
of the covering layer is taken to be 10% of the thickness of the damping layer.

Only symmetric configurations are considered. A thickness bound of .15 inches

was used.
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An optimum shape for low frequency excitation (_ = 20 rad/sec), is shown
in Figure 8 for 100%damping. Comparingthis with Figure 5, it is seen that
the optimumprofiles have opposite trends. Oneshould not anticipate the same
trend in both cases. The basic stress at work in the unconstrained damping layer
is the bending stress _ c whereas it is the shear stress O c in the constrained

X ' XZ

case.

The improvement in performance (RRO) at 100% damping was found to be 53%.

This should be compared with the 19% improvement noted for the unconstrained layer

(with the smaller thickness bound). It can be concluded that constrained layers

lead to significant improvement in performance.
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