3,165 research outputs found

    Balanced homodyne detectors in QFT

    Get PDF
    Within the dipole approximation we describe the interaction of a photodiode with the quantum electric field. The diode is modelled by an electron in a bound state which upon interaction, treated perturbatively in the paper, can get excited to one of the scattering states. We furthermore analyze a balanced homodyne detector (BHD) with a local oscillator (LO) consisting of two photodiodes illuminated by a monochromatic coherent state. We show, that to the leading order the BHD's output measures the expectation value of the quantum electric field, in the state without the LO, restricted to the frequency of the LO. The square of the output measures the two-point function of the quantum field. This shows that the BHDs provide tools for measurements of sub-vacuum (negative) expectation values of the squares quantum fields and thus for test of Quantum Energy Inequality - like bounds, or other QFT effects under the influence of external conditions.Comment: Revised version with minor mistakes remove

    There are No Causality Problems for Fermi's Two Atom System

    Full text link
    A repeatedly discussed gedanken experiment, proposed by Fermi to check Einstein causality, is reconsidered. It is shown that, contrary to a recent statement made by Hegerfeldt, there appears no causality paradoxon in a proper theoretical description of the experiment.Comment: 6 pages, latex, DESY 94-02

    Nickel hydrogen low Earth orbit test program update and status

    Get PDF
    The current status of nickel-hydrogen (NiH2) testing ongong at NWSC, Crane In, and The Aerospace Corporation, El Segundo, Ca are described. The objective of this testing is to develop a database for NiH2 battery use in Low Earth Orbit (LEO) and support applications in Medium Altitude Orbit (MAO). Individual pressure vessel-type cells are being tested. A minimum of 200 cells (3.5 in diameter and 4.5 in diameter) are included in the test, from four U.S. vendors. As of this date (Nov. 18, 1986) approximately 60 cells have completed preliminary testing (acceptance, characterization, and environmental testing) and have gone into life cycling

    Effective Constraints and Physical Coherent States in Quantum Cosmology: A Numerical Comparison

    Full text link
    A cosmological model with a cyclic interpretation is introduced, which is subject to quantum back-reaction and yet can be treated rather completely by physical coherent state as well as effective constraint techniques. By this comparison, the role of quantum back-reaction in quantum cosmology is unambiguously demonstrated. Also the complementary nature of strengths and weaknesses of the two procedures is illustrated. Finally, effective constraint techniques are applied to a more realistic model filled with radiation, where physical coherent states are not available.Comment: 32 pages, 25 figure

    Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy

    Get PDF
    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown

    Pion-Nucleon Scattering in Kadyshevsky Formalism: I Meson Exchange Sector

    Get PDF
    In a series of two papers we present the theoretical results of πN\pi N/meson-baryon scattering in the Kadyshevsky formalism. In this paper the results are given for meson exchange diagrams. On the formal side we show, by means of an example, how general couplings, i.e. couplings containing multiple derivatives and/or higher spin fields, should be treated. We do this by introducing and applying the Takahashi-Umezawa and the Gross-Jackiw method. For practical purposes we introduce the Pˉ\bar{P} method. We also show how the Takashashi-Umezawa method can be derived using the theory of Bogoliubov and collaborators and the Gross-Jackiw method is also used to study the nn-dependence of the Kadyshevsky integral equation. Last but not least we present the second quantization procedure of the quasi particle in Kadyshevsky formalism.Comment: 29 page

    Relational interpretation of the wave function and a possible way around Bell's theorem

    Full text link
    The famous ``spooky action at a distance'' in the EPR-szenario is shown to be a local interaction, once entanglement is interpreted as a kind of ``nearest neighbor'' relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the ``nearest neighbor'' relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, ``position'' becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the ``weird'' aspects, like the particle-wave duality, the non-locality of entanglement, or the ``mystery'' of the double-slit experiment, disappear. Furthermore, this picture cirumvents the restrictions set by Bell's inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.Comment: Accepted for publication in "International Journal of Theoretical Physics

    Canonical Quantization Inside the Schwarzschild Black Hole

    Full text link
    We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to the need for CPT invariance to construct an explicitly positive definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum.Comment: 8 pages, LaTex. Title altered. One reference added. A few typos esp. eq.(7),(38) corrected. To appear in Class.Q.Gra

    Effective quantum gravity observables and locally covariant QFT

    Get PDF
    Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to construct models of quantum field theories on a general class of Lorentzian manifolds. Recently this idea has been applied also to perturbative quantum gravity, treated as an effective theory. The difficulty was to find the right notion of observables that would in an appropriate sense be diffeomorphism invariant. In this article I will outline a general framework that allows to quantize theories with local symmetries (this includes infinitesimal diffeomorphism transformations) with the use of the BV (Batalin-Vilkovisky) formalism. This approach has been successfully applied to effective quantum gravity in a recent paper by R. Brunetti, K. Fredenhagen and myself. In the same paper we also proved perturbative background independence of the quantized theory, which is going to be discussed in the present work as well.Comment: 16 pages, based on a plenary talk given at the 14th Marcel Grossmann Meeting in Rome (July 2015

    Vacuum Structures in Hamiltonian Light-Front Dynamics

    Full text link
    Hamiltonian light-front dynamics of quantum fields may provide a useful approach to systematic non-perturbative approximations to quantum field theories. We investigate inequivalent Hilbert-space representations of the light-front field algebra in which the stability group of the light-front is implemented by unitary transformations. The Hilbert space representation of states is generated by the operator algebra from the vacuum state. There is a large class of vacuum states besides the Fock vacuum which meet all the invariance requirements. The light-front Hamiltonian must annihilate the vacuum and have a positive spectrum. We exhibit relations of the Hamiltonian to the nontrivial vacuum structure.Comment: 16 pages, report \# ANL-PHY-7524-TH-93, (Latex
    corecore