403 research outputs found

    Full Sky Study of Diffuse Galactic Emission at Decimeter Wavelengths

    Full text link
    A detailed knowledge of the Galactic radio continuum is of high interest for studies of the dynamics and structure of the Galaxy as well as for the problem of foreground removal in Cosmic Microwave Background measurements. In this work we present a full-sky study of the diffuse Galactic emission at frequencies of few GHz, where synchrotron radiation is by far the dominant component. We perform a detailed combined analysis of the extended surveys at 408, 1420 and 2326 MHz (by Haslam et al. 1982, Reich 1982, Reich & Reich, 1986 and Jonas et al. 1998, respectively). Using the technique applied by Schlegel et al. (1998) to the IRAS data, we produce destriped versions of the three maps. This allows us to construct a nearly-full-sky map of the spectral index and of the normalization factor with sub-degree angular resolution. The resulting distribution of the spectral indices has an average of beta = 2.695 and dispersion sigma_{beta} = 0.120. This is representative for the Galactic diffuse synchrotron emission, with only minor effects from free-free emission and point sources.Comment: 10 pages, 16 jpeg figures, accepted to Astronomy & Astrophysics, Comments and figure adde

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift zz\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    A radio continuum survey of the southern sky at 1420 MHz. Observations and data reduction

    Get PDF
    We describe the equipment, observational method and reduction procedure of an absolutely calibrated radio continuum survey of the South Celestial Hemisphere at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full beam brightness) and the angular resolution (HPBW) is 35.4', which matches the existing northern sky survey at the same frequency.Comment: 9 pages with 9 figures, A&A, in pres

    New Brilliant Blue G Derivative as Pharmacological Tool in Retinal Surgery.

    Get PDF
    Our study was aimed at assessing the retinal binding of a new synthetic Brilliant Blue G (BBG) derivative (pure benzyl-Brilliant Blue G; PBB) ophthalmic formulation, to improve vitreoretinal surgery procedure. Protein affinity of the new molecule was evaluated in vitro (cell-free assay) and in silico. Furthermore, an ex vivo model of vitreoretinal surgery was developed by using porcine eyes to assess the pharmacological profile of PBB, compared to commercial formulations based on BBG and methyl-BBG (Me-BBG). PBB showed a higher affinity for proteins (p &lt; 0.05), compared to BBG and Me-BBG. In vitro and in silico studies demonstrated that the high selectivity of PBB could be related to high lipophilicity and binding affinity to fibronectin, the main component of the retinal internal limiting membrane (ILM). The PBB staining capabilities were evaluated in porcine eyes in comparison with BBG and Me-BBG. Forty microliters of each formulation were slowly placed over the retinal surface and removed after 30 s. After that, ILM peeling was carried out, and the retina collected. BBG, Me-BBG, and PBB quantification in ILM and retina tissues was carried out by HPLC analysis. PBB levels in the ILM were significantly (p &lt; 0.05) higher compared to BBG and Me-BBG formulations. On the contrary, PBB showed a much lower (p &lt; 0.05) distribution in retina (52 ng/mg tissue) compared to BBG and Me-BBG, in particular PBB levels were significantly (p &lt; 0.05) lower. Therefore, the new synthetic Brilliant Blue derivative (PBB) showed a great ILM selectivity in comparison to underneath retinal layers. In conclusion, these findings had high translational impact with a tangible improving in ex vivo model of retinal surgery, suggesting a future use during surgical practice

    The Sunyaev-Zeldovich effect as a probe of the galaxy formation process

    Full text link
    The Sunyaev-Zeldovich (SZ) effect has proven to be an extremely powerful tool to study the physical and evolutionary properties of rich clusters of galaxies. Upcoming SZ experiments, with their much improved sensitivity and angular resolution, will provide unique information also on phases of galaxy evolution characterized by the presence of large amounts of hot proto-galactic gas. We present a preliminary analysis of the SZ signals that can be expected at the collapse of the proto-galaxy when, according to the standard scenario, the gas is heated at its virial temperature, and during episodes of strong energy injections from the active nucleus. The contributions of such signals to excess power on arc-minute scales recently found by CBI and BIMA experiments are briefly discussed.Comment: 10 pages, 2 figures, to appera in proc. Int. Symp. "Plasmas in the Laboratory and in the Universe: new insights and new challenges", Como, Sept. 200

    A multifrequency angular power spectrum analysis of the Leiden polarization surveys

    Full text link
    The Galactic synchrotron emission is expected to be the most relevant source of astrophysical contamination in cosmic microwave background polarization measurements, at least at frequencies 30'. We present a multifrequency analysis of the Leiden surveys, linear polarization surveys covering essentially the Northern Celestial Hemisphere at five frequencies between 408 MHz and 1411 MHz. By implementing specific interpolation methods to deal with these irregularly sampled data, we produced maps of the polarized diffuse Galactic radio emission with pixel size of 0.92 deg. We derived the angular power spectrum (APS) (PI, E, and B modes) of the synchrotron dominated radio emission as function of the multipole, l. We considered the whole covered region and some patches at different Galactic latitudes. By fitting the APS in terms of power laws (C_l = k l^a), we found spectral indices that steepen with increasing frequency: from a = -(1-1.5) at 408 MHz to a = -(2-3) at 1411 MHz for 10 < l < 100 and from a = -0.7 to a = -1.5 for lower multipoles (the exact values depending on the considered sky region and polarization mode). The bulk of this steepening can be interpreted in terms of Faraday depolarization effects. We then considered the APS at various fixed multipoles and its frequency dependence. Using the APSs of the Leiden surveys at 820 MHz and 1411 MHz, we determined possible ranges for the rotation measure, RM, in the simple case of an interstellar medium slab model. Taking also into account the polarization degree at 1.4 GHz, we could break the degeneracy between the identified RM intervals. The most reasonable of them turned out to be RM = 9-17 rad/m^2.Comment: 18 pages, 14 figures. Astronomy and Astrophysics, in pres

    The Low Frequency Instrument in the ESA Planck mission

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the cosmic plasma at redshift z~1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During the current year the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight in the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. Planck will observe the sky with two instruments over a wide spectral band (the Low Frequency Instrument, based on coherent radiometers, from 30 to 70 GHz and the High Frequency Instrument, based on bolometric detectors, from 100 to 857 GHz). The mission performances will improve dramatically the scientific return compared to WMAP. Furthermore the LFI radiometers (as well as some of the HFI bolometers) are intrinsically sensitive to polarisation so that by combining the data from different receivers it will be possible to measure accurately the E mode and to detect the B mode of the polarisation power spectrum. Planck sensitivity will offer also the possibility to detect the non-Gaussianities imprinted in the CMB.Comment: 4 pages, 2 figures, to appear in "Proc of International Symposium on Plasmas in the Laboratory and in the Universe: new insights and new challenges", September 16-19, 2003, Como, Ital

    A polarized synchrotron template for CMBP experiments after WMAP data

    Full text link
    We build template maps for the polarized Galactic--synchrotron emission on large angular scales (FWHM =~7^\circ), in the 20-90 GHz microwave range, by using WMAP data. The method, presented in a recent work, requires a synchrotron total intensity survey and the {\it polarization horizon} to model the polarized intensity and a starlight polarization map to model polarization angles. The basic template is obtained directly at 23 GHz with about 94% sky--coverage by using the synchrotron map released by the WMAP team. Extrapolations to 32, 60 and 90 GHz are performed by computing a synchrotron spectral index map, which strongly reduces previous uncertainties in passing from low (1.4 GHz) to microwave frequencies. Differing from low frequency data, none of our templates presents relevant structures out of the Galactic Plane. Our map at 90 GHz suggests that the synchrotron emission at high Galactic latitudes is low enough to allow a robust detection of the EE--mode component of the cosmological signal on large--scale, even in models with low--reionization (τ=0.05\tau = 0.05). Detection of the weaker BB--mode on the largest scales (<10\ell < 10) might be jeopardized unless the value τ=0.17\tau = 0.17 found by WMAP is confirmed, and T/S>0.1T/S > 0.1. For lower levels of the gravitational--wave background the BB--mode seems to be accessible only at the 100\ell \sim 100 peak and in selected low--synchrotron emission areas.Comment: 13 pages, 14 figures, accepted for pubblications by MNRAS. For a version with full resolution color figures see http://sp0rt.bo.iasf.cnr.it:8080/Docs/Public/papers.ph
    corecore