75 research outputs found

    Hamiltonian Multivector Fields and Poisson Forms in Multisymplectic Field Theory

    Full text link
    We present a general classification of Hamiltonian multivector fields and of Poisson forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories. This is a prerequisite for computing explicit expressions for the Poisson bracket between two Poisson forms.Comment: 50 page

    Singular factorizations, self-adjoint extensions, and applications to quantum many-body physics

    Full text link
    We study self-adjoint operators defined by factorizing second order differential operators in first order ones. We discuss examples where such factorizations introduce singular interactions into simple quantum mechanical models like the harmonic oscillator or the free particle on the circle. The generalization of these examples to the many-body case yields quantum models of distinguishable and interacting particles in one dimensions which can be solved explicitly and by simple means. Our considerations lead us to a simple method to construct exactly solvable quantum many-body systems of Calogero-Sutherland type.Comment: 17 pages, LaTe

    Strukturelles Design auf der Nanometerskala

    Get PDF
    For numerous technical applications, condensed materials must be specifically produced and manipulated on the nanometre scale. This frequently means the creation of an order with characteristic lengths in the range of extension of single atoms. Besides the possibility of constructing a solid "atom by atom" with suitable procedures, specific local transformations driven by energy input can also produce modified structures which display new and technically utilisable properties.Für zahlreiche technische Anwendungen müssen kondensierte Materialien auf der Nanometerskala gezielt hergestellt und manipuliert werden. Dies bedeutet häufig die Schaffung einer Ordnung mit charakteristischen Längen in der Größenordnung der Ausdehnung einzelner Atome. Neben der Möglichkeit, den Festkörper „Atom für Atom“ mit geeigneten Verfahren aufzubauen, können auch gezielte lokale Umwandlungen durch Energieeintrag modifizierte Strukturen, welche neuartige und technisch nutzbare Eigenschaften aufweisen, hervorbringen

    Lagrangian-Hamiltonian unified formalism for field theory

    Get PDF
    The Rusk-Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for PDE's.Comment: LaTeX file, 23 pages. Minor changes have been made. References are update

    DAFS Experiments with Non-Centrosymmetric Single Crystals

    Full text link

    Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction

    Full text link
    Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2 revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C associated with the disorder of the Fe vacancies. Irreversibility observed during the transition is likely associated with a mobility of intercalated Alkali atoms. Pressure-dependent synchrotron powder diffraction on Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that the I4/m superstructure reflections are present up to pressures of 120 kbar. This may indicate that the ordering of the Fe vacancies is present in both superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl

    On the k-Symplectic, k-Cosymplectic and Multisymplectic Formalisms of Classical Field Theories

    Get PDF
    The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).Comment: 25 page

    Invariant Forms and Automorphisms of Locally Homogeneous Multisymplectic Manifolds

    Full text link
    It is shown that the geometry of locally homogeneous multisymplectic manifolds (that is, smooth manifolds equipped with a closed nondegenerate form of degree > 1, which is locally homogeneous of degree k with respect to a local Euler field) is characterized by their automorphisms. Thus, locally homogeneous multisymplectic manifolds extend the family of classical geometries possessing a similar property: symplectic, volume and contact. The proof of the first result relies on the characterization of invariant differential forms with respect to the graded Lie algebra of infinitesimal automorphisms, and on the study of the local properties of Hamiltonian vector fields on locally multisymplectic manifolds. In particular it is proved that the group of multisymplectic diffeomorphisms acts (strongly locally) transitively on the manifold. It is also shown that the graded Lie algebra of infinitesimal automorphisms of a locally homogeneous multisymplectic manifold characterizes their multisymplectic diffeomorphisms.Comment: 25 p.; LaTeX file. The paper has been partially rewritten. Some terminology has been changed. The proof of some theorems and lemmas have been revised. The title and the abstract are slightly modified. An appendix is added. The bibliography is update
    corecore