We study self-adjoint operators defined by factorizing second order
differential operators in first order ones. We discuss examples where such
factorizations introduce singular interactions into simple quantum mechanical
models like the harmonic oscillator or the free particle on the circle. The
generalization of these examples to the many-body case yields quantum models of
distinguishable and interacting particles in one dimensions which can be solved
explicitly and by simple means. Our considerations lead us to a simple method
to construct exactly solvable quantum many-body systems of Calogero-Sutherland
type.Comment: 17 pages, LaTe