228,702 research outputs found

    Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation

    Get PDF
    In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation

    Velocity and temperature distributions of coal-slag layers on magnetohydrodynamic generators walls

    Get PDF
    Approximate analytical expressions are derived for the velocity and temperature distributions in steady state coal slag deposits flowing over MHD generator walls. Effects of slag condensation and Joule heating are included in the analysis. The transport conditions and the slag temperature at the slag-gas interface are taken to be known parameters in the formulation. They are assumed to have been predetermined either experimentally or from the slag properties and the gas dynamic calculations of the free stream flow. The analysis assumes a power law velocity profile for the slag and accounts for the coupling between the energy and momentum conservation equations. Comparisons are made with the more exact numerical solutions to verify the accuracy of the results

    Static tests of a simulated upper surface blown jet-flap configuration utilizing a full-size turbofan engine

    Get PDF
    The investigation utilizing a small turbofan engine was conducted to evaluate static turning performance and pressure and temperature environment of an upper surface blown wing and flap segment. The tests involved modifications of the engine primary nozzle to alleviate high-temperature problems on the wing and flaps without adversely affecting static turning performance over the desired range of flap deflection and thrust condition

    Possible Reentrance of the Fractional Quantum Hall Effect in the Lowest Landau Level

    Get PDF
    In the framework of a recently developed model of interacting composite fermions, we calculate the energy of different solid and Laughlin-type liquid phases of spin-polarized composite fermions. The liquid phases have a lower energy than the competing solids around the electronic filling factors nu=4/11,6/17, and 4/19 and may thus be responsible for the fractional quantum Hall effect at nu=4/11. The alternation between solid and liquid phases when varying the magnetic field may lead to reentrance phenomena in analogy with the observed reentrant integral quantum Hall effect.Comment: 4 pages, 3 figures; revised version accepted for publication in Phys. Rev. Let

    Quantum Phases in Partially Filled Landau Levels

    Get PDF
    We compare the energies of different electron solids, such as bubble crystals with triangular and square symmetry and stripe phases, to those of correlated quantum liquids in partially filled intermediate Landau levels. Multiple transitions between these phases when varying the filling of the top-most partially filled Landau level explain the observed reentrance of the integer quantum Hall effect. The phase transitions are identified as first-order. This leads to a variety of measurable phenomena such as the phase coexistence between a Wigner crystal and a two-electron bubble phase in a Landau-level filling-factor range 4.15<nu<4.264.15 < nu < 4.26, which has recently been observed in transport measurements under micro-wave irradiation.Comment: 6 pages, 2 figures; to appear in "Proceedings of the 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag-16)

    Second Generation of Composite Fermions and the Self-Similarity of the Fractional Quantum Hall Effect

    Get PDF
    A recently developed model of interacting composite fermions, is used to investigate different composite-fermion phases. Their interaction potential allows for the formation of both solid and new quantum-liquid phases, which are interpreted in terms of second-generation composite fermions and which may be responsible for the fractional quantum Hall states observed at unusual filling factors, such as nu=4/11. Projection of the composite-fermion dynamics to a single level, involved in the derivation of the Hamiltonian of interacting composite fermions, reveals the underlying self-similarity of the model.Comment: 4 pages, 1 figure; to appear in "Proceedings of the 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag-16)", only change with respect to v1: correction in authors line, no changes in manuscrip

    Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    Get PDF
    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of its aquatic invertebrate host, Daphnia magna. We found that high food carbon : phosphorus (C: P) ratios significantly reduced infection rates of Pasteuria in Daphnia and led to lower within-host pathogen multiplication. In addition, greater virulent effects of bacterial infection on host reproduction were found in Daphnia-consuming P-deficient food. Poor Daphnia elemental nutrition thus reduced the growth and reproduction of its bacterial parasite, Pasteuria. The effects of poor host nutrition on the pathogen were further evidenced by Pasteuria's greater inhibition of reproduction in P-limited Daphnia. Our results provide strong evidence that elemental food quality can significantly influence the incidence and intensity of infectious disease in invertebrate hosts

    Investigation of the aerodynamic characteristics of a lifting body in ground proximity

    Get PDF
    The use of cambered hull shapes in the next generation of lighter-than-air vehicles to enhance aerodynamic performance, together with optimized take-off manoeuvre profiles, will require a more detailed understanding of ground proximity effects for such aircraft. A series of sub-scale wind tunnel tests at Re = 1.4 x 106 on a 6:1 prolate spheroid are used to identify potential changes in aerodynamic lift, drag and pitching moment coefficients that are likely to be experienced on the vehicle hull in isolation when in close ground proximity. The experimental data is supported by a preliminary assessment of surface pressure changes using a high order panel method (PANAIR) and RANS CFD simulations to assess the flow structure. The effect of ground proximity, most evident when non-dimensional ground clearance (h/c) < 0.3, is to reduce lift coefficient, increase drag coefficient and increase the body pitching moment coefficient
    corecore