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ABSTRACT 17 

In cattle early gastrulation-stage embryos (Stage 5) four tissues can be discerned: (i) the top layer of 18 

the embryonic disc consisting of embryonic ectoderm (EmE), (ii) the bottom layer of the disc 19 

consisting of mesoderm, endoderm and visceral hypoblast (MEH), (iii) the trophoblast (TB) and (iv) 20 

the parietal hypoblast. We performed microsurgery followed by RNA seq to analyse the 21 

transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic 22 

disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the 23 

OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ 24 

cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were 25 

transcribed in the Stage 4 disc, but no longer by Stage 5. The stage 5 MEH layer was equally similar 26 

to mouse embryonic and extraembryonic visceral endoderm. Our data suggests that the first 27 

mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, 28 

PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative 29 

members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB 30 

transcriptome was the most unique and differed significantly from that of mice. FGF signalling in the 31 

TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential 32 

inter-tissue interactions, highlighted significant differences in early development between mice and 33 

cattle and yielded insight into the developmental events occurring at the start of gastrulation. 34 

 35 

Keywords:  Cattle, Embryo, Preimplantation, RNAseq, Gastrulation 36 

 37 
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Introduction 38 

Understanding the first two weeks of cattle embryonic development is of scientific as well as 39 

commercial relevance as during this period the greatest rate of conceptus loss is seen (Ayalon, 1978; 40 

Diskin et al., 2011; Sartori et al., 2010). The problem is equally apparent in embryo transfer 41 

experiments. Growing embryos in culture to the blastocyst stage and then transferring into 42 

recipients revealed losses of 24 % in the second week of development (Berg et al., 2010).  43 

Such losses may not be surprising considering the critical developmental events that occur during 44 

this week (Pfeffer, 2014; van Leeuwen et al., 2015): At the end of the first week, the successful 45 

embryo has undergone the first lineage specification event resulting in two distinct lineages, namely 46 

the inner cell mass (ICM) and the outer trophectoderm. The trophectoderm becomes committed to 47 

the trophoblast fate during the second week (Berg et al., 2011), then gradually starts to form a 48 

subpopulation (20%) of interspersed terminally differentiated binucleate cells (Wooding, 1992). 49 

Towards the end of the second week, the trophoblast overlying the epiblast (termed Rauber’s layer 50 

or polar trophoblast) has disappeared, exposing the outer surface of the ICM/epiblast to the 51 

maternal environment (van Leeuwen et al., 2015). The inner cell mass forms two layers by 52 

embryonic day nine (Day 0 corresponds to fertilisation), namely the epiblast and underlying 53 

hypoblast (Maddox-Hyttel et al., 2003). The hypoblast (also termed primitive endoderm) migrates to 54 

line the entire blastocyst cavity thus underlying both the epiblast and the trophoblast. The hypoblast 55 

under the epiblast is now, at Stage 2, (see van Leeuwen et al., 2015, for staging used here) termed 56 

the visceral hypoblast, whereas that underlying the “mural” trophoblast is the “parietal” hypoblast 57 

(mural and parietal are derived from Latin: “belonging to walls” to indicate their structurally 58 

supportive function for the embryo proper). From approximately 12 days after fertilisation (Stage 3), 59 

one end of the visceral hypoblast changes morphology, becoming thicker, with projections to the 60 

epiblast. This thickened area is termed the anterior visceral hypoblast (AVH) and is presumed to be 61 

homologous to the anterior visceral endoderm (AVE) of the mouse and the anterior marginal 62 
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crescent of the rabbit by virtue of expressing NODAL signalling inhibitors (van Leeuwen et al., 2015). 63 

The mouse AVE has been shown to direct gastrulation (which requires NODAL) to the opposite end 64 

of the epiblast (Lu et al., 2001).  65 

After the overlying trophoblast has disappeared, the epiblast - during Stage 4 - transitions into a one 66 

to two-cell layered epithelium, known as the embryonic ectoderm (EmE). By Stage 5, cells 67 

accumulate at the posterior margin of the EmE and then will translocate in a medial anterior 68 

direction, forming a groove (the primitive streak) with the funnel-shaped node at its anterior end. 69 

Some cells at the posterior margin and along the primitive streak and node will undergo an 70 

epithelial-mesenchymal transition and migrate out of the plane of the EmE. Endoderm cells will 71 

integrate into the underlying visceral hypoblast layer, displacing these cells in an anterior direction. 72 

Mesoderm cells will populate the space between the EmE and hypoblast/endoderm. Mesoderm cells 73 

migrating beyond the borders of the EmE will come to line the trophoblast and parietal hypoblast 74 

and thus form extraembryonic mesoderm. Mesoderm cells underlying the EmE form the (embryonic) 75 

mesoderm layer. At this stage AVH markers are no longer detectable (van Leeuwen et al., 2015). The 76 

epiblast or EmE and underlying layers are easily identifiable by dissecting microscope and are 77 

collectively termed the embryonic disc. 78 

While we have recently described the morphology of, and expression of select genes in, the various 79 

tissues seen at these embryonic stages (van Leeuwen et al., 2015), little is known about the global 80 

transcriptome at the tissue level. Whole embryo gene expression profiling has been reported (Mamo 81 

et al., 2011), however such studies would predominantly capture the trophoblast tissue as the 82 

parietal hypoblast to trophoblast cell ratio is only about 1 to 10 and the embryonic disc represents 83 

an even smaller part of the whole conceptus during this period. We have here exploited the power 84 

and accuracy of RNAseq combined with an isothermal amplification procedure to allow us to capture 85 

the gene expression profile of all four separable tissues of a single cattle early gastrulation (Stage 5) 86 

embryo. To allow a better developmental understanding of the complex embryonic disc tissue, we 87 

additionally included the analysis of a Stage 4 disc. 88 
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 89 

Materials and Methods 90 

Embryo collection and dissection 91 

All animal work was approved by the Ruakura Animal Ethics committee RAEC 12025 (Hamilton, New 92 

Zealand) and all efforts were made to minimize suffering. In vitro produced embryos were 93 

generated as previously described (Berg et al., 2010), using oocytes from uncharacterised 94 

dairy cows and sperm from a Friesian bull. On Day 7 following IVF, Grade 1 and 2 95 

blastocysts were transferred to recipient animals and recovered on Day 14 or 15 after 96 

fertilisation, as previously described in detail (van Leeuwen et al., 2015). Reagents were from 97 

Sigma if not indicated otherwise. After collection in ePBS (enriched phosphate buffered 98 

medium: CA-Mg-free PBS tablets with 0.0132 g/L CaCl2.2H2O, 0.010 g/L MgCl2.6H2O, 99 

0.036 g/L sodium pyruvate, 1 g/L glucose, Penicillum/streptomycin and 10% FCS),  embryos 100 

were split into TB and embryonic disc-containing parts, then washed three times 5 min in 101 

DMEM. The embryonic disc was cut away from surrounding tissue using micro knives (Ultra 102 

Sharpe Splitting Blades, Bioniche Animal Health Asia, Australia), then digested for 3 min on 103 

ice with pancreatin/trypsin (2.5% w/v pancreatin; 0.5% trypsin; 0.5% polyvinylpyrrolidone) 104 

in Ca/Mg-free Tyrodes-Ringers saline (per litre 8.0 g NaCl, 0.30 g KCl, 0.093 g 105 

NaH2PO4.5H2O, 0.025 g KH2PO4, 1.0 g NaHCO3, 2.0 g glucose). The disc was transferred to 106 

cold DMEM with 10% FCS and the underlying endoderm/mesoderm/visceral hypoblast layer 107 

carefully peeled off the embryonic ectoderm using watchmaker’s tweezers (Dumont #5 108 

biologie, ProSciTech, Australia). Both tissues were rinsed in cold PBS before transferral in 1 109 

µL volume to 0.6 mL microcentrifuge tubes and freezing in liquid Nitrogen before storage at 110 

-80°C. TB and parietal hypoblast required a 5 to 6 min enzymatic digestion period. For this 111 

work, all four tissues, from a single Day 15 embryo, were used for RNA sequencing. 112 
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Additionally a whole embryonic disc from a Day 14 embryo was analysed. At that 113 

developmental stage we were unable to cleanly separate the embryonic ectoderm and 114 

underlying visceral hypoblast. Physical characteristics of these two embryos are shown in 115 

Table 1. 116 

 117 

RNA sequencing 118 

RNA was isolated using Trizol, followed by DNAaseI digestion and ethanol precipitation as previously 119 

described (Smith et al., 2007).  RNA was amplified by isothermal strand displacement using the 120 

Ovation RNA-seq V2 system (NuGEN; Millennium Science, Wellington, NZ), which enriches for poly-121 

A-containing mRNA. Yields of amplified cDNA were between 6.6 and 11 μg. Amplified DNA was sent 122 

to Macrogen (Seoul, Korea) for Illumina library construction (RNA TruSeq) and sequencing (Illumina 123 

HiSeq2000). Both ends of fragments (average length between 441 and 501 bp) at a sequencing 124 

depth of 46 to 74 million per sample (Table 2). Illumina 1.9 encoding indicated excellent sequencing 125 

quality (scores >28) of reads up to 100 bp. Regions of low quality sequence and Illumina primers and 126 

adapters remaining from the sequencing process were removed from the reads using Flexbar (Dodt 127 

et al., 2012). The trimmed reads were then mapped against the Bos taurus UMD3.1 genome using 128 

Tophat (Trapnell et al., 2009), and against the NCBI Bos taurus RefSeq mRNA using BWA (Li and 129 

Durbin, 2009). The percentages mapped are shown in Table 1. Reads mapping to the RefSeq 130 

database were normalised for transcript length (FPK, Fragment reads Per Kilobase of exon) then 131 

adjusted using negative binomial modeling and the edgeR program (Robinson et al., 2010) within R 132 

(R Core Team, 2014). Total numbers of adjusted FPK for the five samples ranged from 8.3 to 8.6 133 

million and were converted to FPKM (FPK per million reads). The data is available as supplementary 134 

information (Table S1). 135 

 136 
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Data analysis 137 

An FPKM of one for a RefSeq (NCBI) transcript (subsequently referred to as “gene”) corresponds to 138 

approximately one mRNA molecule per cell (Mortazavi et al., 2008). Samples exhibiting an FPKM for 139 

a gene of less than one were set to equal 1 (“cut-off’). Genes for which FPKM = 1 for all five samples 140 

were ignored. All analyses were done on log (base two) transformed values. For differential 141 

expression analyses, expression levels were classified into ten log base 2 ‘bins’ (0 to 11), with bin ‘x’ 142 

containing values where x ≤ log2 (FPKM) < (x+1) for x = 1 to 10. For bin 11 (x = 11), x  was ≤ log2 143 

(FPKM), with no upper limit, so as to capture all highly expressed genes. Binary patterns were 144 

derived following the concept of Yanai et al (Yanai et al., 2005). For this, a ‘gap’ index was assigned 145 

to each gene by sorting the bin values of the five samples and determining the maximum difference 146 

(‘gap’) between neighbouring values. For profiles with a gap of at least 3 (corresponding to a greater 147 

than four-fold difference in expression), expression above the gap was classified as over-expressed 148 

(= 1), below as under-expressed (0) (Yanai et al., 2005). Where two gaps were found for one gene, 149 

the lower bin value was used. Where no gap was found, expression was set to 1 (expressed) for all 150 

samples with an FPKM value above the cut-off. The binary expression values for each gene were 151 

assembled into a five digit pattern, e.g. DEMHT = 01010 means that this gene in: Stage 4 embryonic 152 

disc (= D) is not expressed, EmE (= E) is expressed, MEH (= M) is not expressed, PH (= H) is expressed 153 

and TB (= T) is not expressed. The binary codes were used to exclude ‘common’ genes expressed in 154 

all (code 11111) or all-but-one samples (01111, 10111, 11011, 11101, 11110), and for generating 155 

(using Excel) the data in the Venn diagram (Fig. 1E). The Venn diagram was populated manually using 156 

a graphics program (Adobe Illustrator). The principal component analysis was generated using the 157 

pca.srbct function in R (R Core Team, 2014), using all genes for which expression was evident in at 158 

least one sample. Our gene expression data and assembled lists of genes (genes associated with 159 

mouse embryonic stages and tissues; genes expressed in cattle blastocyst lineages) were uploaded 160 

and analysed via the Ingenuity Core program (Quiagen, Duesseldorf, Germany). For creating the 161 

cattle blastocyst lists, the published gene sets (Nagatomo et al., 2013; Ozawa et al., 2012) for each 162 
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lineage (ICM and TE) were compared and genes expressed in both datasets were used. P values for 163 

analyses of Pathways, Biological functions and Curated gene list comparisons were calculated within 164 

Ingenuity using the right-tailed Fisher’s Exact Test. 165 

 166 

Results 167 

Sample characteristics and gene expression 168 

Four tissue types were analysed from an embryo, which was generated by in vitro embryo 169 

production, then transferred as an expanded blastocyst into a synchronised recipient cow and 170 

retrieved 14 days after fertilisation. Using embryo size and epiblast size  (Table 1; Fig. 1), the embryo 171 

was classified as Stage 5, early gastrulation (van Leeuwen et al., 2015). The four tissues included  172 

(i) the upper layer of the embryonic disc, which is composed of the embryonic ectoderm (EmE), 173 

wherein the primitive streak and node form; 174 

(ii) the cells underlying the embryonic ectoderm composed of a mixture of visceral hypoblast 175 

cells, endoderm and mesoderm (MEH); 176 

(iii) parietal hypoblast (PH) and  177 

(iv) trophoblast (TB). 178 

PH and TB were taken well away from the embryonic disc to remove the possibility of contamination 179 

with extraembryonic mesoderm, which at this stage migrates out from the edges of the embryonic 180 

disc in-between the TB and PH and was evident under the dissecting microscope (Fig. 1B, C). The 181 

position of these tissues are indicated (Fig. 1D, E). Lastly, an embryonic disc of a Stage 4 embryo was 182 

analysed (Table 1; Fig. 1A). Fifty to seventy million reads were obtained for each tissue. Mapping 183 

revealed that a quarter of reads could be assigned to known reference sequences, except for the TB 184 

tissue, for which only an eighth could be assigned. The overall fraction of sequence that could be 185 

matched to the bovine genome was between 70 and 81% (Table 2). It is unclear whether the lower 186 
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reference sequence recognition rate for the TB tissue is caused by an experimental artefact such as 187 

increased DNA contamination in the RNA preparation or has a biological reason such as differential 188 

splicing or increased transcription of non-reference genes. 189 

A total of 12843 genes were found to be expressed. For analysing differential expression among the 190 

5 tissues we used an algorithm that incorporated relative expression levels in addition to a more 191 

simple lower threshold level (Yanai et al., 2005). Thus greater than 4 to 8 fold jumps (or ‘gaps’, see 192 

methods) in expression levels were also considered in scoring expression, with only tissues above 193 

this gap scored as over-expressing a gene. Using this scheme and representing the results in a 5-fold 194 

Venn diagram (Fig. 1E) , revealed the following: 195 

1. The early disc has more uniquely expressed genes (362) than  either of its descendant tissues 196 

(EmE, 207; MEH, 160). 197 

2. The Stage 5 EmE is much more closely related to the Stage 4 embryonic disc than is the stage 5 198 

MEH tissue (389 versus 111) 199 

3. The Parietal hypoblast is most closely related to the MEH tissue. 200 

4. The trophoblast shows the most divergent gene expression profile with a large number of genes 201 

(14% of TB genes) uniquely expressed. The other tissues only contain 1 to 4% unique genes. 202 

We further compared the relatedness of  the five tissues using principal component analysis without 203 

scoring for differential expression (Fig. 2). This again revealed the close relationship of the Stage 5 204 

EmE to the Stage 4 Disc, a greater divergence of the MEH and the large divergence of the Stage 5 PH 205 

and TB tissues form the early Disc. Notably Stage 5 parietal hypoblast is most similar to MEH 206 

(mesendoderm and visceral hypoblast) presumably as both share hypoblast-derived tissue.. 207 

Comparison of bovine to mouse embryonic gene expression profiles 208 

We next asked how similar the tissues that we isolated were to mouse embryonic tissues. Lists of 209 

genes expressed in particular embryonic tissues and cells were compiled based on published whole 210 
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mount in situ expression patterns from  embryonic day 5.5 to 8 pre- to post-gastrulation mouse 211 

embryos (Table 3). Only genes represented in four or less of the 12 mouse tissues were used. These 212 

lists were compared to our bovine tissue lists compiled by excluding common genes (expressed in 213 

more than three of the five samples) and including, for each tissue, only the genes scored as (over)-214 

expressed according to our algorithm. As whole mount in situ hybridisation is not as sensitive as 215 

RNAseq, a higher cutoff of FPKM = 2 was used. The significance of the overlaps between the  bovine 216 

and mouse lists are shown in Figure 3 (expressed genes are shown in Fig. S2). Key observations are: 217 

1. Stage 4 Embryonic disc is most similar to mouse epiblast/embryonic ectoderm tissue, anterior 218 

visceral endoderm (hypoblast) and primordial germ cells. 219 

2. Stage 5 EmE tissue closely resembles the mouse EmE tissue and also matches mouse primordial 220 

germ cell gene markers. 221 

3. MEH tissue is heterogeneous in its gene expression profile matches. On the one hand, the 222 

nascent endomesodermal cells reflect their embryonic ectodermal origin, and show highly 223 

significant matches to mouse primitive streak and node markers, definitive endoderm and 224 

extraembryonic mesoderm. Of note, no similarity to embryonic mesoderm is seen at this stage. 225 

On the other hand,  the hypoblast component of the MEH expression profile matches mouse 226 

visceral as well as extraembryonic visceral endoderm/hypoblast. The tissue exhibits weaker 227 

similarity to mouse AVE markers and Parietal endoderm/hypoblast. 228 

4. Cattle PH expression most resembles mouse visceral endoderm/hypoblast genes but notably 229 

shows little similarity to mouse parietal endoderm/hypoblast. 230 

5. Cattle TB shows some similarity (P < 0.05) only to genes expressed in mouse ectoplacental cone 231 

trophoblast tissue. 232 

The five cattle tissues were also compared to lineage specific cattle embryo datasets. Two published 233 

gene expression lists (Nagatomo et al., 2013; Ozawa et al., 2012) of cattle Day 8 ICM (embryonic disc 234 

precursor) and trophectoderm were compared to the Day 15 tissues (Fig. 3). As expected, all four 235 
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ICM derived tissues correlated well with the cattle ICM gene sets but not with the Day 8 TE, whereas 236 

the converse was true for the trophoblastic tissues. 237 

 238 

Pathway analyses 239 

We next analysed the differentially expressed genes using Ingenuity pathway analysis (FPKM > 1, 240 

excluding common genes). The Stage 4 embryonic disc and its developmental derivatives, Stage 5 241 

EmE and MEH, all scored highest for two categories of pathway (Fig. 4). One involves WNT signaling 242 

including both the canonical (β-CATENIN dependent) and non-canonical WNT/PCP (planar cell 243 

polarity) pathways. The other category is based on embryonic stem (ES) cell networks. MEH and PH 244 

tissues scored for cardiogenesis. Among the top hits for PH were PAK and actin cytoskeleton 245 

signaling. These are related as PAK mediates actin cytoskeletal rearrangements.  TB scored highly for 246 

G-protein coupled receptor signaling and steroidogenic pathways with this tissue expressing all 247 

genes required for ADHE (dehydroepiandrosterone) to 5α-dihydro- testosterone or to estradiol-17β 248 

conversion. 249 

Signalling pathways were analysed in terms of receptor and ligand transcription, using all expressed 250 

genes and a curated list (Fig. S1) of 131 growth factors/cytokines and their 69 receptors/receptor co-251 

gactors derived from Ingenuity and KEGG databases. All ligand families, for which at least one signal 252 

and matching receptor was expressed, are depicted in Figure 5.  ANGIOPOIETIN-LIKE 1 is produced in 253 

large quantities by PH, though this tissue has no receptor for it, suggesting it acts on the adjacent TB 254 

tissue, which does express TEK. Of the growth factors that predominantly act through the RAS-RAF-255 

Classical MAPK pathway, the ERBB (EGF) family was not detected. However, FGFs and PDGFs were 256 

found to be well represented. FGF2 is widely expressed at high levels, with hypoblast–containing 257 

tissues additionally expressing FGF10, and the EmE co-expressing FGF4. All tissues expressed a range 258 

of FGF receptors, except TB which only expressed FGFR2. PDGFA and its receptor were expressed in 259 

all tissues, albeit at highly variable levels with hypoblast-containing tissues (PH, MEH) containing 260 
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abundant receptors, while the overlying epithelia (TB and EmE, respectively) expressing the most 261 

ligand, suggesting a paracrine interaction. VEGFA and B, which act via numerous intracellular 262 

pathways, were ubiquitously expressed, with the VEGFA receptor transcribed at the highest level in 263 

TB, whereas the B receptor and NRP co-receptors were exclusive to the EmE and MEH tissues. 264 

INSULIN-like signaling (IGF2) emanated predominantly from hypoblast-containing tissue, while 265 

receptors were ubiquitous. INDIAN HEDGEHOG was transcribed in the Stage 4 Disc and Stage 5 MEH, 266 

with abundant receptor and coreceptors in Disc, MEH and EmE, though Disc and EmE also expressed 267 

high amounts of the inhibitory membrane protein HHIP. The BMP-branch of TGFβ signalling was well 268 

represented via BMP2, 4 and 7 expression in all tissues except TB, and ubiquitous expression of the 269 

receptors (Type 1: ALK2, ALK3, Type 2: ACVR2A). Few of the large arrray of BMP inhibitors were 270 

expressed. Of the TGFβ/NODAL/ACTIVIN-like ligands, TGFβ ligands were detected at less than 2 271 

FPKM (not shown in Fig. 5), however, NODAL and GDF3 were robustly transcribed at Stage 4 and at 272 

Stage in the EmE and MEH. The widespread and extensive transcription of the ACTIVIN inhibitor 273 

FOLLISTATIN would suggest that the modest amount of INHBA (ACTIVIN A subunit) made in MEH 274 

would have little effect. Curiously, the NODAL/GDF3 type 1 receptors ALK4 and ALK7 were absent in 275 

all tissues, whereas the TGFβ-specific ALK5 receptor was detected, as was the NODAL co-receptor 276 

CRIPTO. Lastly, WNT signalling, in concurrence with the pathway analyses, was prominent in the 277 

embryonic disc related tissues (Disc/EmE/MEH), while the receptor FRIZZLED-3 was expressed in all 278 

tissues at high levels. The main ligands were WNT11 (Disc, EmE), WNT2B (MEH) and WNT5A and B 279 

(EmE, MEH). Notably, WNT inhibitors are also expressed at very high levels, in particular SFRP1 in the 280 

disc-related tissues, and DKK1 in PH. 281 

 282 
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Discussion 283 

The pre-gastrulation Stage 4 embryonic disc 284 

The Stage 4 disc is a heterogeneous structure, characterised by a 2-cell layered epithelium that is the 285 

embryonic ectoderm (EmE) and the visceral hypoblast layer beneath it. Both are derived from the 286 

ICM and the transcriptome of the disc showed the greatest resemblance of all five tissues to ICM 287 

gene sets. One important developmental event occurring as embryos transit from Stage 3 to Stage 4 288 

is the expansion of the anterior visceral hypoblast (AVH) signalling centre and indeed the mouse 289 

AVE-specific markers LEFTY2, GSC, SFRP1 and HHEX were detected in the Stage 4 embryonic disc.  290 

CER1, a cattle AVH marker detectable by in situ hybridisation (van Leeuwen et al., 2015), lay below 291 

our cut-off, possibly because of a combination of low expression and a limited expression domain. In 292 

terms of signalling pathways, at this stage NODAL becomes progressively restricted to the posterior 293 

end of the EmE, where it induces the process of gastrulation (van Leeuwen et al., 2015). We noted 294 

the disc to express the highest levels of NODAL, as well as GDF3, which can also signal via the NODAL 295 

pathway (Andersson et al., 2007). Surprisingly though, while type 2 NODAL/GDF3 receptors and the 296 

essential NODAL-signalling cofactor CRIPTO were robustly expressed, neither of the required type 1 297 

receptors (ALK4, ALK7) known to mediate NODAL signalling in mouse embryos (Moustakas and 298 

Heldin, 2009) could be detected. Potentially the strongly expressed ALK5 receptor, known to 299 

mediate signalling for other members of this branch of TGFβ ligands (such as TGFβ1-3, GDF1, 3, 8, 9) 300 

(Moustakas and Heldin, 2009), is used at these cattle embryonic stages to transmit NODAL signalling. 301 

Alternatively, in cattle, GDF3 could be mediating the effects attributed to NODAL in the mouse. This 302 

issue merits further investigation. WNT signalling was evidenced by WNT11 and receptors FZD3, 4, 7 303 

and 10 expression. Significantly, WNT11 signals via the PCP non-canonical pathway and this pathway 304 

has been linked in amniotes to medio-lateral cell intercalations in the embryonic ectoderm 305 

preceding and during gastrulation (Voiculescu et al., 2007). FGF signalling is represented by FGF2 and 306 

transcription of all known FGF receptors. The exclusive expression of FGF2 differs from mouse 307 
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embryos, which do not express FGF2 until mid-gastrulation stages (Taniguchi et al., 1998; Wordinger 308 

et al., 1994), but express the closely related FGF4 and FGF8 instead (Niswander and Martin, 1992; 309 

Crossley and Martin, 1995). 310 

 311 

The Stage 5 Extraembryonic Ectoderm (EmE) 312 

The Stage 5 EmE and Stage 4 disc are remarkably similar in terms of (i) their transcriptomes, uniquely 313 

sharing 389 genes, (ii) their transcriptomes plot closely together upon PCA analysis, (ii) these tissues 314 

sharing the same top five canonical pathways and (iv) scoring similarly highly in comparisons with 315 

the mouse epiblast/embryonic ectoderm gene set. The Stage 5 EmE as well as Stage 4 disc express 316 

all three master regulators of stemness/pluripotency, namely POU5F1 (OCT4), SOX2 and NANOG 317 

(Wang et al., 2012; Boyer et al., 2005) as well as KLF4, OTX2, PRDM14, SALL4, STAT3 and ZIC3 318 

(Tsubooka et al., 2009; Acampora et al., 2013; Dunn et al., 2014). The function of the Oct4-SOX2-319 

NANOG (OSN) network is to keep cells in an undifferentiated state primed for differentiation and 320 

thus the continued expression of the OSN-network is likely to explain the overall similarity of gene 321 

expression in the EmE tissues of Stage 4 and 5. Interestingly, these tissues also displayed high 322 

similarity to the list of mouse primordial germ cell (PGC) markers. In mouse embryos, PGC are 323 

specified in the embryonic ectoderm from embryonic Day 6.25, just before gastrulation starts 324 

(Magnúsdóttir et al., 2012). While the first PGC-specifying gene, PRDM1 (BLIMP1) and the PGC 325 

marker DDX4 are transcribed only early on, at Stage 4, the downstream cascade represented by 326 

PRDM14, which is essential for PGC development, TFAP2C, DND1, and the requisite pluripotency 327 

OSN triumvirate (Magnúsdóttir et al., 2013; Yamaji et al., 2008; Youngren et al., 2005), are all 328 

expressed at both stages. We conclude that in cattle, PGCs originate around Stage 4 and are found in 329 

the embryonic ectoderm layer at Stage 5, when gastrulation starts. 330 

In mice, gastrulation is preceded by NODAL signals switching on canonical WNT signalling in the 331 

embryonic ectoderm and BMP signals in the adjacent trophoblast, with all three signals then 332 
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required for inducing prospective endoderm and mesoderm (reviewed in (Arnold and Robertson, 333 

2009)). NODAL/GDF3 and WNT signal/receptor transcription was also seen in the cattle embryonic 334 

ectoderm, however, unlike the mouse, BMP2/4/7 ligands were not expressed in the trophoblast but 335 

induced in the EmE itself, as well as in the subjacent layer of hypoblast/mesendoderm (the MEH). 336 

This makes sense in that, in cattle, no trophoblast tissue overlies the EmE at these stages, due to the 337 

different morphology of the cattle and mouse early gastrula. A second difference lies in the specific 338 

WNT ligand expressed: mice require WNT3 for gastrulation (Liu et al., 1999), but in cattle WNT5B is 339 

expressed instead. Molecularly, NODAL/WNT/BMP signalling switches on three key genes that drive 340 

mesendoderm generation in vertebrates, namely EOMESODERMIN, BRACHYURY and MIXL1 (Hart et 341 

al., 2002; Hart et al., 2005; Arnold et al., 2000; Robertson, 2014). The cattle homologues are all 342 

expressed in the Stage 5 embryonic ectoderm (Table S1). In mice, prospective mesendodermal cells 343 

in the embryonic ectoderm are induced to undergo a epithelial-mesenchymal transition and to 344 

migrate out of this layer under the influence of FGF signalling, as shown by FGF8 (with concomitant 345 

loss of FGF4 expression) and FGFR1 knock-outs (Sun et al., 1999; Brewer et al., 2015). Notably, FGF8 346 

expression was not detected in cattle embryos, however the ubiquitous FGF2 transcription was 347 

boosted in Stage 5 EmE by FGF4 expression. As FGF2/4/8 all activate the same receptor isoforms 348 

(Ornitz et al., 1996), the change in the cattle versus mouse transcriptional networks may be without 349 

phenotypic consequence.  350 

 351 

The lower layer of the Stage 5 embryonic disc 352 

Gene expression comparisons of the MEH with the mouse lists indicated the expression of node and 353 

primitive streak markers pointing to nascent mesendoderm formation. Interestingly the ingressing 354 

cells exhibited mainly extra-embryonic mesoderm and endoderm characteristics, whereas 355 

embryonic mesoderm markers were not expressed. We conclude that in cattle, cells giving rise to 356 

definitive endoderm and mesodermal cells of extraembryonic fate are the first to migrate out of the 357 
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EmE. Extraembryonic mesoderm cells are those that subsequently line the trophoblast, yolk sac and 358 

amnion and presumably also give rise to the allantois (Maddox-Hyttel et al., 2003; Vejlsted et al., 359 

2006).  360 

In mice the (embryonic) visceral hypoblast/endoderm lines the EmE (Kaufman, 1995). In this species 361 

the cup-shaped EmE abuts along its rim a distinct type of proliferative trophoblast, termed the 362 

extraembryonic ectoderm (ExE). At the implantation end of the egg cylinder the ExE then merges 363 

into the ectoplacental cone (EPC) and the rest of the mural trophoblast. The hypoblast that lines the 364 

ExE is the extraembryonic visceral hypoblast and that covering the EPC and rest of the mural 365 

trophoblast is the parietal hypoblast. This distinction between embryonic and extraembryonic 366 

visceral hypoblast cannot be made in cattle embryos based on morphological criteria, as no 367 

anatomical homolog to the ExE exists in this species. Similarly, the MEH gene expression data 368 

comparisons with the mouse tissues allows no molecular distinction to be made between these two 369 

types of visceral hypoblast tissue in cattle.  370 

In comparison to the EmE, the MEH layer exhibited a distinctly different signalling transcriptome:  (i) 371 

TGFβ signalling was shifted from a NODAL-like to a BMP-like dominant program. This is likely related 372 

to the formation of the extraembryonic mesoderm as BMPs have been shown to be essential for the 373 

development of this tissue (Zhang and Bradley, 1996).  (ii) WNT ligands were transcribed at greater 374 

levels with the appearance of WNT11 and WNT2B as well as WNT5A transcription. The overall much 375 

lower levels of receptors (FRIZZLED 1 and 10 were switched off) points to a MEH-derived WNT role 376 

predominantly in the overlying EmE. The high levels of WNT2A in the MEH may aid in canonical WNT 377 

signalling in the EmE as previously discussed, whereas WNT5A and WNT11 have been associated 378 

with planar cell polarity (PCP) mediated convergence extension movements required, at this stage, 379 

for the lengthening of the primitive streak (Andre et al., 2015). (iii) The appearance of FGF10 in MEH  380 

(and PH) may be cattle-specific as FGF10 is seen in mouse embryos only at late gastrulation stages 381 

(Tagashira et al., 1997). (iv) HEDGEHOG signalling ligands and receptors (IHH, PTCH1, SMO) were 382 

detected in the EmE/VH tissues of the Stage 4 disc and this signalling is continued at Stage 5 with the 383 
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signal, INDIAN HEDGEHOG (IHH), being exclusively transcribed in the visceral hypoblast-containing 384 

MEH layer. During mouse embryogenesis, IHH is expressed only in the VH, but required for the 385 

differentiation of the adjacent EmE into neuroectoderm as gastrulation commences (Maye et al., 386 

2004). The expression of IHH receptor and Co-receptor (PTCH1 and SMO) in the EmE (SMO is 387 

transcribed at threefold lower levels in the MEH) supports a similar vertical signalling role for IHH in 388 

cattle EmE specification. (v) Similarly, IGF2 is expressed in MEH, but not EmE, whereas the receptor 389 

is ubiquitous.   390 

 391 

Parietal hypoblast 392 

The cattle parietal hypoblast underlying the trophoblast is destined, together with a lining of 393 

extraembryonic mesoderm, to form the yolk sac (Betteridge and Flechon, 1988). The overlap with 394 

the mouse parietal hypoblast marker list was not significant. Instead a high significance was seen 395 

with mouse embryonic and extraembryonic visceral hypoblast, suggesting that the differentiation of 396 

hypoblast into the visceral and parietal lineages is dissimilar in mice and cattle. Pathway analyses 397 

gave few clues as to the function of this tissue with relatively low significant hits of a more general 398 

nature, including two matches for pathways involving the actin cytoskeleton. 399 

The PH transcribes few growth factors and a more limited range of receptors than the previously 400 

discussed tissues. In particular NODAL-like and WNT signals are not transcribed and receptors for 401 

FGF, VEGF, HEDGEHOG, WNT and ANGEIOPOIETIN signalling are absent or transcribed at low levels. 402 

However, PDGF receptor A is expressed at very high levels and the overlying TB produces the ligand 403 

at very high levels. Indeed in mouse embryos roles for PDGFRA in the expansion of the hypoblast 404 

and formation of the yolk sac has been shown (Artus et al., 2010; Ogura et al., 1998). This is likely 405 

conserved in cattle with the likely source being trophoblastic.  406 

The high expression of ANGIOPOIETIN-LIKE-1, but not its receptor, may relate to the paracrine 407 

induction of blood vessels in the extraembryonic mesoderm which will line this layer at later stages. 408 
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  409 

Trophoblast 410 

The Stage 5 trophoblast exhibited the most unique transcriptome of those investigated, as seen in 411 

the principal component analysis and the large set of uniquely expressed genes. This uniqueness ties 412 

in with the fact that the trophoblast is the first lineage to be specified and that by Day 14, TB is 413 

committed to its fate (Berg et al., 2011). This is corroborated by the switching on of steroidogenic 414 

enzyme transcription (pathway analyses), characteristic of steroid-hormone producing mature 415 

trophoblast. Unexpectedly, the mouse trophoblast-specific gene lists aligned slightly more 416 

significantly to the cattle EmE than TB. The mouse gene lists were assembled from genes expressed 417 

either in the extraembryonic ectoderm (ExE) or the ectoplacental cone (EPC). The ExE, from which 418 

mouse trophoblast stem cells can be derived, harbours predominantly undifferentiated trophoblast 419 

cells some of which will give rise to syncytiotrophoblast cells, while the EPC contains more 420 

differentiated cells, destined to become either spongiotrophoblast or various types of secondary 421 

giant cells (Pfeffer and Pearton, 2012). Cattle do not appear to contain cells equivalent to syncytio- 422 

or spongiotrophoblast thus explaining the low concordance with the mouse trophoblast lists. More 423 

fundamentally, the trophoblast differences highlight that this tissue, which gives rise to the placenta, 424 

is evolutionarily speaking relatively new, its origin lying near the start of the divergence of eutherian 425 

mammals. Different species of mammals have elaborated on the requirements of gestation in 426 

radically different ways (such as the cattle minimally invasive synepitheliochorial versus the mouse 427 

invasive hemochorial modes of placentation), requiring large adaptive changes in the trophoblast 428 

which would be reflected in distinct transcriptomes. 429 

In spite of these differences, two key trophoblast aspects appear to have been at least partly 430 

conserved. The first is lineage specification. In mice the trophoblast lineage specification and 431 

determination network involves the key genes Cdx2, Gata3, Tfap2a, Tfap2c, Elf5, Eomes and Ets2 432 

with Ascl2 appearing in slightly more differentiated cells (Pfeffer and Pearton, 2012). Except for 433 
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Eomes, these genes were also detected in the Stage 5 TB. The absence of EOMES from cattle TB has 434 

been noted previously using real-time PCR (Smith et al., 2010). The second commonality involves 435 

FGF signalling which appears to be involved in both species though with a distinct variation in signal 436 

source. Mouse proliferative trophoblast and trophoblast stem cells exhibit a requirement for FGF 437 

signalling believed to emanate in vivo predominantly from the mouse EmE in the form of FGF4 438 

(Tanaka et al., 1998). We found here that Stage 5 TB contains FGFR2 and synthesises FGF2 itself. 439 

Further FGF signalling may be delivered in a paracrine fashion in the form of FGF10 transcribed in 440 

the subjacent PH. Due to the different topology of the mouse and cattle conceptuses, cattle embryos 441 

cannot rely on the EmE as a FGF source, because unlike in the mouse, most of the cattle trophoblast 442 

is simply physically to distant from this EmE. Hence an autocrine production of this signal and/or a 443 

supply from the hypoblast may be adaptations to meet a conserved TB requirement for FGF 444 

signalling. 445 

This analysis of the transcriptome of all four major tissues of the same embryo at a single moment of 446 

developmental time allowed unique insights into the different events occurring at the start of 447 

gastrulation. While focussing on tissues of a single embryo ensures consistency in terms of 448 

developmental stage, it does not address issues of consistency of expression across similarly staged 449 

embryos. Such expression may vary for some genes such as those exhibiting oscillatory behaviour 450 

(Phillips et al., 2016). As more studies of all tissues of individual embryo transcriptomes are analysed 451 

a full and detailed transcriptional atlas will be able to be mapped out, paving the way for assembling 452 

the gene regulatory networks that need to be understood so as to alleviate early embryo mortality. 453 
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 625 

Tables 626 

Table 1. Embryo characteristics 627 

Sample Age 

(days) 

Embryo 

length (mm) 

ED length,   

width (μm) 

Stage 4 (EmE-stage)  14 1.3 200, 190 

Stage 5, EG (Early-Gastrula) 14 35 650, 440 

 628 

Table 2. Overview of RNAseq results 629 

Sample Average 

size (bp) 

Number of 

fragments 

%  

RefSeq 
a
 

% non- 

RefSeq 
b
 

%  

mapped 

Stage 4: Disc 481 47,681,017 28% 42% 70% 

Stage 5: EmE 479 68,490,193 25% 51% 75% 

Stage 5: MEH 447 74,522,098 29% 52% 81% 

Stage 5: PH 501 46,483,443 25% 51% 76% 

Stage 5: TB 441 66,016,989 12% 65% 77% 

 630 

a  Percentage uniquely mapped to RefSeq database (NCBI) RNA sequences 631 

b  Number of fragments (excluding those already  mapped to RefSeq) uniquely mapped to Bos 632 

taurus UMD3.1 genome 633 

Disc, embryonic disc; EmE, embryonic ectoderm; MEH, mesoderm, endoderm and visceral 634 

hypoblast; PH, parietal hypoblast; TB, trophoblast. 635 

 636 
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Table 3. List of mouse gene sets and domains they are expressed in.  637 

Epiblast/EmE, (30), ACVR1B, CNRIP1, EOMES, ESRRB, EVX1, FGF4, FGF5, FGFR1, FOXH1, GDF3, 638 

HESX1, IFITM1, IGFBP3, IHH, LPAR4, NANOG, NODAL, OTX2, POU5F1, RARG, SOX2, T, TDGF1, WNT3 639 

PGC, Primordial germ cells, (22), ALPL, CBX7, DAZ2, DDX4, DND1, Dppa3, FUT4, IFITM1, IFITM2, 640 

IFITM3, KDM4B, KLF2, LRRN3, NANOG, NANOS3, POU5F1, PRDM1, PRDM14, Rhox6/Rhox9, SMAD5, 641 

SOX2, TFAP2C 642 

Node and primitive streak, (89), ARG1,  ATP9A, BICC1, BMP7, C15orf65, C4orf22 , CA3,  CALCA, 643 

CDO1,  CDX1, CELSR1, CFAP126, CFC1/CFC1B, CHRD, CYB561, DACT1, Defa-rs2, DMGDH, EOMES, 644 

EVX1, FABP7, Fam183b, FGF3, FGF4, FGF8, FOXD4L1, FST, FURIN, GAL, GBX1, GBX2, GSC, GSN, 645 

GSTM3, HDC, HES1, HOXB1, HOXB2, HOXB8, JOSD2 , KDR, LEF1, LEFTY2, LHX1, LYPD6B, MESP1, 646 

MGST1, MLF1, MMP15, MNX1, NKX1-2, NODAL, NOG, NOTCH1, NOTCH2, PIM1, PKD1L1, PLET1, 647 

PRDM1, PRNP, REC8, RIPK3, RSPO3, SALL3, SCARA3, SEL1L3, SHH, SMIM22, SMOC1, SNAI1, SPRY1, 648 

SPRY2, T, TBX6, TDGF1, TGM2, TLX2, TMEM176A, TMEM176B, TRH, UPK3A, VTN, WNT3, WNT11, 649 

WNT2B, WNT5A, WNT8A, ZIC2, ZIC3 650 

Endoderm, definitive, (32), ADCY8, AIM1, BMP2, CER1, CITED2, CLDN4, CLU, CPM, CPN1, DDO, 651 

DMGDH, EFNA1, GBX2, GPX2, GRIK3, GSC, GSN, HESX1, HHEX, IGFBP3, ISM1, ITGA3, LEFTY1, LPAR3, 652 

PPP1R14A, PRDM1, SEL1L3, SOX17, TMEM176A, TMEM176B, VTN, ZIC3 653 

Extraembryonic Mesoderm, (15), BMP2, BMP4, BMP7, CDX2, FGF8, HOXA3, HOXC8, KDR, LMO2, 654 

SALL3, SMAD2, SMAD5, T, WNT11, WNT5A 655 

Mesoderm, embryonic , Day 6.5-8, (42), ALDH1A2, BMP5, BMP7, CDX1, CFC1/CFC1B, CHRD, CITED1, 656 

CITED2, CYP26A1, DLL1, DNAI1, EOMES, EPHA4, FGF4, FGF8, FOXC1, FOXD4, FST, GBX1, GBX2, 657 

HOXA1, HOXA3, HOXB1, HOXB2, HOXB8, JAG1, LEFTY2, MEIS1, MEOX1, MESP1, MYL1, NOG, 658 

NOTCH1, PCSK5, SMOC1, T, TDGF1, TLE3, TLE4, TLX2, WNT3, WNT5A 659 

AVH/AVE, Anterior visceral endoderm, (14), AMOT, CER1, CITED2, DKK1, GSC, HESX1, HHEX, LEFTY2, 660 

LHX1, NODAL, OTX2, SFRP1, SFRP5, SOX17  661 

VH, Visceral Hypoblast/Primitive endoderm, (27), AFP, AMN, BMP2, CDX1, CER1, CITED1, FGF8, 662 

FURIN, GATA4, GATA6, GSC, HESX1, HHEX, HNF1B, HNF4A, IHH, LEFTY1, NODAL, Otx2, OTX2, PLAU, 663 

PTH1R, SERPINB5, SFRP5, TF, TTR, VIL1 664 

ExVH, Extraembryonic Visceral Hypoblast/Primitive endoderm, (21), ACVR1, AFP, AMN, APOE, 665 

BMP2, BMP4, CITED1, CYP26A1, FURIN, GATA4, GJA1, HAND1, HNF1B, HNF4A, IHH, SERPINB5, 666 

SOX17, TF, TGM2, TTR, VIL1 667 

PH, Parietal hypoblast, (21), CITED1, CYP26A1, FST, HNF1B, KRT19, LAMA1, LAMB1, PDGFA, 668 

PDGFRA, PDGFRB, PLAT, PTH1R, SEL1L3, SNAI1, SOX7, SOX17, SPARC, TF, THBD, TMPRSS2, VIM 669 

ExE, Extraembryonic ectoderm, (25), ACVR1B, ACVR2B, ATP9A, BMP4, CDX2, DLL1, ELF5, EOMES, 670 

ERF, ESRRB, ETS2, FGFR2, FOXD3, FRS2, FURIN, KDR, PCSK6, POU2F1, REEP5, SMAD3, SMARCA4, 671 

SOX2, TEAD4, TFAP2C, ZIC2  672 

EPC, Ectoplacental cone, (20), ASCL2, ATP9A, DLX3, ETS2, FLT1, GCM1, HAND1, ID2, INHBB, MMP9, 673 

NR6A1, PLAC8, POU2F1, RAN, REEP5, SCT, SNAI1, STRA13, TFAP2C, TPBPA 674 

Sourced data from: EMAGE gene expression database (http://www.emouseatlas.org/emage/) and 675 
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(Brown et al., 2010; Familari, 2006; Pearton et al., 2014; Pfeffer and Pearton, 2012; Rielland et al., 676 

2008; Roberts and Fisher, 2011; Ewen and Koopman, 2010; Magnúsdóttir et al., 2013; Magnúsdóttir 677 

et al., 2012; Richardson et al., 2014). 678 

 679 

Figure legends 680 

Figure 1. Differential expression of genes. A-C. Features of Stage 4 and 5 embryos as seen before 681 

dissection. Scale bars are 200 µm. D. Embryonic regions are graphically depicted (cross section 682 

through embryo, colour coded) with nomenclature as previously defined (van Leeuwen et al., 2015). 683 

E. Venn diagrams of differentially expressed genes with insets showing origin of tissues. Arrows 684 

indicate that EmE and MEH are descendant tissues of Stage 4 embryonic disc. AVH, anterior visceral 685 

hypoblast; Disc, embryonic disc; E, endoderm; EmE, embryonic ectoderm; ExM, extraembryonic 686 

mesoderm; PH, parietal hypoblast; PS, primitive streak region; TB, trophoblast; VH, visceral 687 

hypoblast.  688 

 689 

Figure 2. Principal component analysis of gene expression. Arrows indicate developmental 690 

resolution of Stage 4 embryonic disc into the Stage 5 derivatives of embryonic ectoderm and 691 

underlying visceral hypoblast/mesendoderm. Principal component variable 1 (PC1) explained 42% of 692 

the variation, PC2 32%. ED, embryonic disc; EmE, embryonic ectoderm; MEH, mesoderm, endoderm, 693 

visceral hypopblast; PH, parietal hypoblast; TB, trophoblast. 694 

 695 

Figure 3. Comparison to marker genes. For each tissue all genes differentially expressed above a 696 

FPKM cut-off of 2 but excluding those common to at least four of the five tissues, were compared to 697 

curated sets of mouse tissue-specific genes (Table 3), listing the -log(P-value) of the dataset overlaps. 698 

Shading indicates the significance levels visually: black, P < 0.001; dark grey, P < 0.01; light grey, P < 699 

0.05 (e.g. 1.3 = -log(0.05)). AVE, anterior visceral primitive endoderm; EPC, ectoplacental cone 700 
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(mouse); Em, embryonic; Ex, extraembryonic; ExE, extraembryonic ectoderm; PGC, primordial germ 701 

cells; PH, parietal endoderm/hypoblast; VH, visceral endoderm/hypoblast. 702 

 703 

Figure 4. Canonical pathway analysis, Ingenuity pathway analysis, excluding genes co-expressed in 704 

more than four tissues, displaying the -log(P-value) of the highest scoring pathways for each tissue. 705 

Shading indicates the significance levels visually: black, P < 0.001; dark grey, P < 0.01; light grey.  706 

 707 

Figure 5. Expression levels of genes coding for secreted signalling factors (S), inhibitors (I), 708 

receptors (R) and co-receptors (CO-R) in embryonic tissues. The size of the black bars is 709 

proportional to the log of the expression level.  710 
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Figure 1. Differential expression of genes. A-C. Features of Stage 4 and 5 embryos as seen before 
dissection. Scale bars are 200 µm. D. Embryonic regions are graphically depicted (cross section through 
embryo, colour coded) with nomenclature as previously defined (van Leeuwen et al., 2015). E. Venn 

diagrams of differentially expressed genes with insets showing origin of tissues. Arrows indicate that EmE 
and MEH are descendant tissues of Stage 4 embryonic disc. AVH, anterior visceral hypoblast; Disc, 

embryonic disc; E, endoderm; EmE, embryonic ectoderm; ExM, extraembryonic mesoderm; PH, parietal 
hypoblast; PS, primitive streak region; TB, trophoblast; VH, visceral hypoblast.  

Fig. 1  
130x194mm (300 x 300 DPI)  

 

 

Page 27 of 1241

Cambridge University Press

Zygote



  

 

 

Figure 2. Principal component analysis of gene expression. Arrows indicate developmental resolution of 
Stage 4 embryonic disc into the Stage 5 derivatives of embryonic ectoderm and underlying visceral 

hypoblast/mesendoderm. Principal component variable 1 (PC1) explained 42% of the variation, PC2 32%. 
ED, embryonic disc; EmE, embryonic ectoderm; MEH, mesoderm, endoderm, visceral hypopblast; PH, 

parietal hypoblast; TB, trophoblast.  
Fig. 2  

90x88mm (300 x 300 DPI)  

 

 

Page 28 of 1241

Cambridge University Press

Zygote



  

 

 

Figure 3. Comparison to mouse marker genes. For each tissue all genes differentially expressed above a 
FPKM cut-off of 2 but excluding those common to at least four of the five tissues, were compared to curated 
sets of mouse tissue-specific genes (Table 3), listing the -log(P-value) of the dataset overlaps. Shading 
indicates the significance levels visually: black, P < 0.001; dark grey, P < 0.01; light grey, P < 0.05 (e.g. 

1.3 = -log(0.05)). AVE, anterior visceral primitive endoderm; EPC, ectoplacental cone (mouse); Em, 
embryonic; Ex, extraembryonic; ExE, extraembryonic ectoderm; PGC, primordial germ cells; PH, parietal 

endoderm/hypoblast; VH, visceral endoderm/hypoblast.  
Fig. 3  
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Figure 4. Canonical pathway analysis, Ingenuity pathway analysis, excluding genes co-expressed in more 
than four tissues, displaying the -log(P-value) of the highest scoring pathways for each tissue. Shading 

indicates the significance levels visually: black, P < 0.001; dark grey, P < 0.01; light grey.  
Fig. 4  

108x49mm (300 x 300 DPI)  
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Figure 5. Expression levels of genes coding for secreted signalling factors (S), inhibitors (I), receptors (R) 
and co-receptors (CO-R) in embryonic tissues. The size of the black bars is proportional to the log of the 

expression level.  

Fig. 5  
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Accession No Gene

log-St4 

Disc log-St5 EE

log-St5 

MEH log-St5 PH log-St5 TB

Binary 

(DEMPT) 

code

XR_139652

PREDICTED: Bos taurus uncharacterized LOC100848184 

(LOC100848184), miscRNA 13.27 15.00 11.40 11.35 13.17 11111

NM_001035441

Bos taurus nucleophosmin (nucleolar phosphoprotein B23, 

numatrin) (NPM1), mRNA 11.62 13.38 12.54 13.33 13.19 11111

NM_174760 Bos taurus ribosomal protein L10 (RPL10), mRNA 13.51 12.49 13.42 11.97 10.06 11111

NM_174345 Bos taurus heat shock 70kDa protein 8 (HSPA8), mRNA 12.03 12.13 12.01 12.05 12.39 11111

NM_174568

Bos taurus poly(A) binding protein, cytoplasmic 1 (PABPC1), 

mRNA 10.98 11.73 11.91 11.95 11.93 11111

XR_139140

PREDICTED: Bos taurus uncharacterized LOC100850994 

(LOC100850994), miscRNA 13.86 9.64 9.60 6.66 6.42 11100

NM_001163778 Bos taurus fibronectin 1 (FN1), mRNA 11.12 6.10 12.32 13.00 5.86 10110

NM_001103275 Bos taurus acyl-CoA thioesterase 11 (ACOT11), mRNA 10.09 10.98 10.34 10.72 13.16 11111

NM_001079637

Bos taurus heat shock protein 90kDa alpha (cytosolic), class B 

member 1 (HSP90AB1), mRNA 11.46 11.81 11.42 11.47 11.63 11111

NM_001012670

Bos taurus heat shock protein 90kDa alpha (cytosolic), class A 

member 1 (HSP90AA1), mRNA 10.50 11.34 10.96 11.63 11.44 11111

NM_001034459 Bos taurus ribosomal protein L17 (RPL17), mRNA 10.90 11.28 11.88 11.10 10.45 11111

NM_205776

Bos taurus trophoblast Kunitz domain protein 1 (TKDP1), 

mRNA 10.47 11.41 2.32 2.62 12.83 11001

NM_001014388

Bos taurus tumor protein, translationally-controlled 1 (TPT1), 

mRNA 10.81 10.69 11.47 11.68 10.80 11111

NM_001014387 Bos taurus ribosomal protein S12 (RPS12), mRNA 11.50 11.38 11.24 10.51 10.71 11111

NM_174486

Bos taurus voltage-dependent anion channel 2 (VDAC2), 

nuclear gene encoding mitochondrial protein, mRNA 10.37 9.69 10.02 10.18 12.70 11111

NM_001105359

Bos taurus CWC25 spliceosome-associated protein homolog 

(S. cerevisiae) (CWC25), mRNA 9.45 10.36 9.69 10.01 12.79 11111

NM_001045975

Bos taurus heterogeneous nuclear ribonucleoprotein A2/B1 

(HNRNPA2B1), mRNA 10.05 11.56 10.78 11.33 11.23 11111

Table S1. Cattle Stage 4-5 tissue expression
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Mouse List

Cattle 

Tissue  -log(p-value)

Ratio of 

matches Molecules expressed in mouse list and cattle tissue

AVE Disc 5.1 0.54 SOX17,LHX1,NODAL,GSC,SFRP1,HHEX,LEFTY2

AVE EmE 1.4 0.23 NODAL,SFRP1,HHEX

AVE ME 2.7 0.31 SOX17,NODAL,SFRP1,HHEX

EmE/epiblast Disc 10.5 0.56

SOX2,NODAL,EVX1,LPAR4,NANOG,CNRIP1,ZIC3,GDF3,FOXH1,IGFBP3,IHH,EOMES,OTX2,RARG,PO

U5F1

EmE/epiblast EmE 11.6 0.56

SOX2,FGF4,NODAL,LPAR4,NANOG,CNRIP1,ZIC3,T,FOXH1,GDF3,IGFBP3,EOMES,OTX2,RARG,POU5

F1

EmE/epiblast ME 5.7 0.33 NODAL,CNRIP1,ZIC3,GDF3,FOXH1,IHH,EOMES,OTX2,POU5F1

Endoderm defn Disc 3.6 0.28 SOX17,GSC,ZIC3,GPX2,IGFBP3,PPP1R14A,PRDM1,HHEX,GSN

Endoderm defn EmE 0.5 0.09 ZIC3,IGFBP3,HHEX

Endoderm defn ME 3.3 0.22 SOX17,ZIC3,GPX2,PPP1R14A,PRDM1,HHEX,GSN

Endoderm defn PH 1.9 0.09 GPX2,PPP1R14A,GSN

EPC Disc 2.2 0.28 TFAP2C,DLX3,SNAI1,HAND1,ASCL2

EPC EmE 1.7 0.22 TFAP2C,DLX3,SNAI1,HAND1

EPC ME 0.2 0.06 HAND1

EPC TB 1.6 0.17 TFAP2C,DLX3,ASCL2

ExE Disc 1.1 0.17 SOX2,TFAP2C,EOMES,ERF

ExE EmE 2.0 0.21 SOX2,TFAP2C,EOMES,KDR,ERF

ExE ME 1.0 0.13 EOMES,KDR,ERF

ExE TB 0.2 0.04 TFAP2C

ExM EmE 1.3 0.20 T,KDR,WNT5A

ExM ME 1.6 0.20 KDR,WNT11,WNT5A

ExM PH 0.7 0.07 WNT11

ExVE Disc 2.6 0.29 SOX17,HNF1B,IHH,HAND1,HNF4A,GATA4

ExVE ME 5.7 0.38 SOX17,HNF1B,TF,IHH,HAND1,HNF4A,GATA4,VIL1

ExVE PH 2.4 0.14 HNF1B,HNF4A,GATA4

Table S2. Mouse list hits
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ICM cattle  2studies Disc 10.4 0.23

FYN,EMILIN2,CNRIP1,KRT7,SLC4A11,SLCO4A1,BEND4,LGALS4,ROBO1,CD8B,MTTP,SOX2,ID1,LRA

T,MAOB,ADGRF5,GABRG1,SGPP2,ZNF711,CAV1,HNF4A,COL4A1,FEZ1,CBR3,NOSTRIN,ARL3,HNF1

B,IFT122,Gulo,NANOG,TRPS1,ZNF428,GUCA2A,LFNG,IGSF11,A2M,ETV5

ICM cattle  2studies EmE 6.3 0.17

FYN,CNRIP1,SMAD9,FEZ1,KRT7,SLC4A11,SLCO4A1,MEIS2,BEND4,CBR3,CD8B,ROBO1,ARL3,SOX2,

ID1,IFT122,LRAT,NANOG,GABRG1,SGPP2,TRPS1,ZNF428,ZNF711,LFNG,IGSF11,CRYM,ETV5

ICM cattle  2studies ME 9.8 0.18

FYN,EMILIN2,CNRIP1,BEND4,MEIS2,LGALS4,ROBO1,MTTP,ID1,MAOB,ADGRF5,CAV1,ZNF711,HNF

4A,COL4A1,SMAD9,ADAMTS9,ARL3,NOSTRIN,HNF1B,IFT122,BPIFA1,Gulo,CDH17,TRPS1,GUCA2A

,IGSF11,A2M,ETV5

ICM cattle  2studies PH 5.2 0.08 HNF1B,LRAT,MAOB,EMILIN2,Gulo,COL4A1,PDCL2,CDH17,ADAMTS9,HNF4A,NOSTRIN,MTTP

PaEndoderm (PH) Disc 1.9 0.24 SOX17,HNF1B,TMPRSS2,SNAI1,VIM

PaEndoderm (PH) EmE 1.5 0.19 TMPRSS2,SNAI1,VIM,PDGFRB

PaEndoderm (PH) ME 2.7 0.24 SOX17,HNF1B,TF,VIM,PDGFRB

PaEndoderm (PH) PH 0.6 0.05 HNF1B

PGC Disc 4.9 0.44 SOX2,TFAP2C,NANOG,PRDM14,DND1,DDX4,PRDM1,POU5F1

PGC EmE 3.4 0.33 SOX2,TFAP2C,NANOG,PRDM14,DND1,POU5F1

PGC ME 0.7 0.11 PRDM1,POU5F1

PGC TB 0.3 0.06 TFAP2C

PrStreak+Node Disc 2.4 0.16 RSPO3,LHX1,EVX1,NODAL,GSC,GSTM3,SNAI1,PRDM1,EOMES,GSN,LEFTY2,CYB561,WNT11

PrStreak+Node EmE 2.6 0.15 FGF4,CA3,NODAL,TBX6,T,GSTM3,SNAI1,CFAP126,LEF1,EOMES,KDR,WNT5A

PrStreak+Node ME 4.7 0.17

HOXB2,RSPO3,NODAL,TBX6,WNT2B,CFAP126,LEF1,PRDM1,EOMES,KDR,GSN,PLET1,WNT11,WNT

5A

PrStreak+Node PH 1.4 0.05 RSPO3,GSN,PLET1,WNT11

TE cattle 2 studues Disc 0.7 0.13 SCIN,PTGS2,Pga5

TE cattle 2 studues EmE 0.8 0.13 SCIN,PTGS2,Pga5

TE cattle 2 studues TB 2.0 0.17 PLA2R1,SCIN,PTGS2,Pga5

VE (VH) Disc 3.6 0.31 HNF1B,NODAL,GSC,IHH,HHEX,HNF4A,OTX2,GATA4
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VE (VH) EmE 0.7 0.12 NODAL,HHEX,OTX2

VE (VH) ME 5.9 0.35 HNF1B,NODAL,TF,IHH,HHEX,HNF4A,OTX2,GATA4,VIL1

VE (VH) PH 2.1 0.12 HNF1B,HNF4A,GATA4
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Figure S3: Secreted signalling ligands/inhibitors aligned vertically with the receptor(s), and co-receptors.
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