540 research outputs found

    Invasive Signal Crayfish in the UK: Survey Methods to Inform Evidence-based Management

    Get PDF
    With invasive crayfish becoming increasingly widespread, evidence-based management is crucial to protect freshwater ecosystems. Knowledge of the structure and function of invasive crayfish populations allows for an effective evaluation of management efforts. Recent methodological developments have enabled the first truly quantitative studies of UK invasive crayfish populations in the field. This was achieved by the ‘triple drawdown’ (TDD) survey approach. In this article, we explore current survey approaches and their limitations, and we introduce the TDD method with its implications for crayfish survey, policy development and management

    Modification of a charged-Bose-gas model for observed room-temperature superconductivity in narrow channels through films of oxidised atactic polypropylene

    Full text link
    Reasons have been found for thinking that the minimum diameter of channels of a given length to support superconductivity at room temperature through films of oxidised atactic polypropylene (OAPP) is considerably larger than found in a model for Bose condensation in an array of nanofilaments [D.M. Eagles, Phil. Mag. 85, 1931 (2005)] used previously. This model was introduced to interpret experimental results dating from 1988 on OAPP. The channels are thought to be of larger diameter than believed before because, for an N-S-N system where the superconductor consists of an array of single-walled carbon nanotubes, the resistance, for good contacts, is R_Q/2N, where N is the number of nanotubes and R_Q=12.9 kOhm [See e.g. M. Ferrier et al., Solid State Commun. 131, 615 (2004)]. We assume this would be 2R_Q/N for a triplet superconductor with all spins in the same direction and no orbital degeneracy, which may be the case for nanofilaments in OAPP. Hence one may infer a minimum number of filaments for a given resistance. In the present model, the E(K) curve for the bosons is taken to be of a Bogoliubov form, but with a less steep initial linear term in the dispersion at T_c than occurs at low T. This form is different from the simple linear plus quadratic dispersion, with a steeper initial slope, used in my 2005 paper. A combination of theory and experimental data has been used to find approximate constraints on parameters appearing in the theory.Comment: Publication details added. Correction to bracketing in Eq. (1), which was incorrect in v1 of preprint and in the published articl

    Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems

    Get PDF
    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0

    Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

    Full text link
    We present a brief account of the most salient properties of vortices in dilute atomic Fermi superfluids near a Feshbach resonance.Comment: 6 pages, 1 figure, and jltp.cls. Several typos and a couple of inaccuracies have been correcte

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure

    Non-interacting Cooper pairs inside a pseudogap

    Full text link
    I present a simple analytical model describing the normal state of a superconductor with a pseudogap in the density of states, such as in underdoped cuprates. In nearly two-dimensional systems, where the superconducting transition temperature is reduced from the mean-field BCS value, Cooper pairs may be present as slow fluctuations of the BCS pairing field. Using the self-consistent T-matrix (fluctuation exchange) approach I find that the fermion spectral weight exhibits two BCS-like peaks, broadened by fluctuations of the pairing field amplitude. The density of states becomes suppressed near the Fermi energy, which allows for long-lived low-energy Cooper pairs that propagate as a sound-like mode with a mass. A self-consistency requirement, linking the width of the pseudogap to the intensity of the pairing field, determines the pair condensation temperature. In nearly two-dimensional systems, it is proportional to the degeneracy temperature of the fermions, with a small prefactor that vanishes in two dimensions.Comment: LaTeX (prbbib.sty included), 24 pages, 4 PostScript figures To appear in Phys.Rev.

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure

    Variational Monte Carlo Study of Spin-Gapped Normal State and BCS-BEC Crossover in Two-Dimensional Attractive Hubbard Model

    Full text link
    We study properties of normal, superconducting (SC) and CDW states for an attractive Hubbard model on the square lattice, using a variational Monte Carlo method. In trial wave functions, we introduce an interspinon binding factor, indispensable to induce a spin-gap transition in the normal state, in addition to the onsite attractive and intersite repulsive factors. It is found that, in the normal state, as the interaction strength U/t|U|/t increases, a first-order spin-gap transition arises at UcW|U_{\rm c}|\sim W (WW: band width) from a Fermi liquid to a spin-gapped state, which is conductive through hopping of doublons. In the SC state, we confirm by analysis of various quantities that the mechanism of superconductivity undergoes a smooth crossover at around |U_{\ma{co}}|\sim |U_{\rm c}| from a BCS type to a Bose-Einstein condensation (BEC) type, as U/t|U|/t increases. For |U|<|U_{\ma{co}}|, quantities such as the condensation energy, a SC correlation function and the condensate fraction of onsite pairs exhibit behavior of exp(t/U)\sim \exp(-t/|U|), as expected from the BCS theory. For |U|>|U_{\ma{co}}|, quantities such as the energy gain in the SC transition and superfluid stiffness, which is related to the cost of phase coherence, behave as t2/UTc\sim t^2/|U|\propto T_{\rm c}, as expected in a bosonic scheme. In this regime, the SC transition is induced by a gain in kinetic energy, in contrast with the BCS theory. We refer to the relevance to the pseudogap in cuprate superconductors.Comment: 14 pages, 22 figures, submitted to Journal of the Physical Society of Japa
    corecore