11,053 research outputs found

    The Desktop Muon Detector: A simple, physics-motivated machine- and electronics-shop project for university students

    Full text link
    This paper describes an undergraduate-level physics project that incorporates various aspects of machine- and electronics-shop technical development. The desktop muon detector is a self-contained apparatus that employs plastic scintillator as a detection medium and a silicon photomultiplier for light collection. These detectors can be used in conjunction with the provided software to make interesting physics measurements. The total cost of each counter is approximately $100.Comment: 29 pages, 14 figure

    A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level

    Get PDF
    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of (1.51±0.15)×104  cm1ppm1(1.51\pm 0.15)\times10^{-4} \;\mathrm{cm^{-1} ppm^{-1}}, corresponding to an absorption cross section of (7.14±0.74)×1021  cm2molecule1(7.14 \pm 0.74)\times10^{-21}\;\mathrm{cm^{2} molecule^{-1}}. We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a current-generation LArTPC, where a concentration of 2 parts per million of nitrogen is expected, the attenuation length due to nitrogen will be 30±330 \pm 3 meters.Comment: v2: Correct mistake in molecular absorption cross section calculation, and a minor typo in fig

    Systematic study of Pt-Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells

    Get PDF
    In this research, the activity and stability for methanol electro-oxidation on Pt-Ru/C catalysts was increased by optimising the catalyst preparation method. The Pt-Ru/C catalysts were synthesised using Pt(acac)2 and Ru(acac)3 precursors for chemical deposition of the metals. Performance of the catalyst was examined by cyclic voltammetry and chronoamperometry in a methanol-containing electrolyte. TEM, EDS, X-ray photoelectron spectroscopy and XRD were used to physically characterise the catalysts. The parameters investigated were precursor decomposition phase, synthesis temperature and Pt/Ru ratio. Precursor deposition from the liquid phase was more active for methanol electro-oxidation, predominantly due to particle size and degree of alloying achieved during this precursor decomposition phase. Synthesis temperature affected the particle size, active surface area, ruthenium oxidation state and degree of alloying which in turn affected catalyst stability and activity for methanol electro-oxidation. The Pt/Ru ratio greatly affects the performance of the catalyst. The catalyst with the highest activity for methanol electro-oxidation was the catalyst synthesised at 350 °C with a Pt/Ru ratio of 50:50

    Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea)

    Get PDF
    Complete mitochondrial genomes have been shown to be reliable markers for phylogeny reconstruction among diverse animal groups. However, the relative difficulty and high cost associated with obtaining de novo full mitogenomes have frequently led to conspicuously low taxon sampling in ensuing studies. Here, we report the successful use of an economical and accessible method for assembling complete or near-complete mitogenomes through shot-gun next-generation sequencing of a single library made from pooled total DNA extracts of numerous target species. To avoid the use of separate indexed libraries for each specimen, and an associated increase in cost, we incorporate standard polymerase chain reaction-based “bait” sequences to identify the assembled mitogenomes. The method was applied to study the higher level phylogenetic relationships in the weevils (Coleoptera: Curculionoidea), producing 92 newly assembled mitogenomes obtained in a single Illumina MiSeq run. The analysis supported a separate origin of wood-boring behavior by the subfamilies Scolytinae, Platypodinae, and Cossoninae. This finding contradicts morphological hypotheses proposing a close relationship between the first two of these but is congruent with previous molecular studies, reinforcing the utility of mitogenomes in phylogeny reconstruction. Our methodology provides a technically simple procedure for generating densely sampled trees from whole mitogenomes and is widely applicable to groups of animals for which bait sequences are the only required prior genome knowledge
    corecore