40,091 research outputs found

    Persistence of characteristics of an ordered flux line lattice above the second peak in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+ \delta}

    Full text link
    We report Small Angle Neutron Scattering measurements of the flux lines lattice (FLL) in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+ \delta}. As previously reported, the scattered intensity decreases strongly when the magnetic field is increased, but it remains measurable far above the second peak. The direct observation of Bragg peaks proves that the characteristics of a lattice are still present. No structural features related to a symmetry breaking, such as a liquid like or an amorphous state, can be observed. However, the associated scattered intensity is very low and is difficult to explain. We discuss the coexistence between two FLL states as a possible interpretation.Comment: accepted for publication in Phys Rev

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page

    Upper critical field in {Ba1x_{1-x}Kx_xBiO3_3}: magnetotransport versus magnetotunneling

    Full text link
    Elastic tunneling is used as a powerful direct tool to determine the upper critical field Hc2(T)H_{c2}(T) in the high-TcT_c oxide Ba1x_{1-x}Kx_xBiO3_3. The temperature dependence of Hc2H_{c2} inferred from the tunneling follows the Werthamer-Helfand-Hohenberg prediction for type-II superconductors. A comparison will be made with resistively determined critical field data.Comment: 4 pages incl. 5 figure

    Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions

    Full text link
    The small dispersion limit of solutions to the Camassa-Holm (CH) equation is characterized by the appearance of a zone of rapid modulated oscillations. An asymptotic description of these oscillations is given, for short times, by the one-phase solution to the CH equation, where the branch points of the corresponding elliptic curve depend on the physical coordinates via the Whitham equations. We present a conjecture for the phase of the asymptotic solution. A numerical study of this limit for smooth hump-like initial data provides strong evidence for the validity of this conjecture. We present a quantitative numerical comparison between the CH and the asymptotic solution. The dependence on the small dispersion parameter ϵ\epsilon is studied in the interior and at the boundaries of the Whitham zone. In the interior of the zone, the difference between CH and asymptotic solution is of the order ϵ\epsilon, at the trailing edge of the order ϵ\sqrt{\epsilon} and at the leading edge of the order ϵ1/3\epsilon^{1/3}. For the latter we present a multiscale expansion which describes the amplitude of the oscillations in terms of the Hastings-McLeod solution of the Painlev\'e II equation. We show numerically that this multiscale solution provides an enhanced asymptotic description near the leading edge.Comment: 25 pages, 15 figure

    Quaternionic Diffusion by a Potential Step

    Get PDF
    In looking for qualitative differences between quaternionic and complex formulations of quantum physical theories, we provide a detailed discussion of the behavior of a wave packet in presence of a quaternionic time-independent potential step. In this paper, we restrict our attention to diffusion phenomena. For the group velocity of the wave packet moving in the potential region and for the reflection and transmission times, the study shows a striking difference between the complex and quaternionic formulations which could be matter of further theoretical discussions and could represent the starting point for a possible experimental investigation.Comment: 10 pages, 1 figur

    Relativistic Static Thin Disks: The Counter-Rotating Model

    Get PDF
    A detailed study of the Counter-Rotating Model (CRM) for generic finite static axially symmetric thin disks with nonzero radial pressure is presented. We find a general constraint over the counter-rotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counter-rotating perfect fluids. We also found expressions for the energy density and pressure of the counter-rotating fluids. Then we shown that, in general, there is not possible to take the two counter-rotating fluids as circulating along geodesics neither take the two counter-rotating tangential velocities as equal and opposite. An specific example is studied where we obtain some CRM with well defined counter-rotating tangential velocities and stable against radial perturbations. The CRM obtained are in agree with the strong energy condition, but there are regions of the disks with negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review

    Children's syntax is supported by the maturation of BA44 at 4 years, but of the posterior STS at 3 years of age

    Get PDF
    Within the first years of life, children learn major aspects of their native language. However, the ability to process complex sentence structures, a core faculty in human language called syntax, emerges only slowly. A milestone in syntax acquisition is reached around the age of 4 years, when children learn a variety of syntactic concepts. Here, we ask which maturational changes in the child's brain underlie the emergence of syntactically complex sentence processing around this critical age. We relate markers of cortical brain maturation to 3- and 4-year-olds' sentence processing in contrast to other language abilities. Our results show that distinct cortical brain areas support sentence processing in the two age groups. Sentence production abilities at 3 years were associated with increased surface area in the most posterior part of the left superior temporal sulcus, whereas 4-year-olds showed an association with cortical thickness in the left posterior part of Broca's area, i.e. BA44. The present findings suggest that sentence processing abilities rely on the maturation of distinct cortical regions in 3- compared to 4-year-olds. The observed shift to more mature regions involved in processing syntactically complex sentences may underlie behavioral milestones in syntax acquisition at around 4 years

    Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor

    Full text link
    Using high speed scanning tunneling spectroscopy, we perform a full mapping of the quasiparticle density of states (DOS) in single crystals of BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial pattern of important variations of the local DOS on the nanometer scale. Superconducting areas are co-existing with regions of a smooth and larger gap-like DOS structure. The superconducting regions are found to have a minimum size of about 3 nm. The role of Pb-introduced substitutional disorder in the observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures

    Solid helium at high pressure: A path-integral Monte Carlo simulation

    Full text link
    Solid helium (3He and 4He) in the hcp and fcc phases has been studied by path-integral Monte Carlo. Simulations were carried out in the isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one to study the temperature and pressure dependences of isotopic effects on the crystal volume and vibrational energy in a wide parameter range. The obtained equation of state at room temperature agrees with available experimental data. The kinetic energy, E_k, of solid helium is found to be larger than the vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at low pressures, and decreases as the applied pressure is raised, converging to 1, as in a harmonic solid. Results of these simulations have been compared with those yielded by previous path integral simulations in the NVT ensemble. The validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure
    corecore