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In looking for qualitative differences between quaternionic and complex formula-
tions of quantum physical theories, we provide a detailed discussion of the behavior
of a wave packet in the presence of a quaternionic time-independent potential step.
In this paper, we restrict our attention to diffusion phenomena. For the group
velocity of the wave packet moving in the potential region and for the reflection
and transmission times, the study shows a striking difference between the complex
and quaternionic formulations which could be matter of further theoretical discus-
sions and could represent the starting point for a possible experimental
investigation. © 2006 American Institute of Physics. [DOL: 10.1063/1.2359577]

I. INTRODUCTION

Despite much research on quaternionic quantum mechanics, reviewed in its mathematical and
physical aspects in the excellent book of Adler,' there have been few breakthroughs on the most
natural question about the effect that quaternionic potentials play in the dynamics of elementary
palrti(:les%5 and, as a consequence of it, about the possibility to look for an experimental
proposal.679 In this paper, by using the new mathematical tools developed in the analytic resolu-
tion of eigenvalue problernsm’11 and differential equations,ﬁ’lzf14 we analyze in detail the diffusion
of a wave packet by a quaternionic potential step.

For the convenience of the reader and to facilitate access to the individual topics, this work is
rendered as self-contained as possible. In Sec. II, we set up notation and terminology and proceed
with the study of diffusion by quaternionic potentials. This section contains the (analytic) plane
wave solution of the quaternionic Schrodinger equation in the presence of a potential step. This
represents a fundamental mathematical tool in the discussion of the quaternionic stationary phase
method (see Sec. III). We will touch only a few aspects of the theory of quaternionic integral
transforms and restrict our attention to the diffusion of quaternionic wave packets with a peaked
convolution function. The advantage of using the stationary phase method lies in the fact that, in
the presence of a potential step, the motion of the wave packet can be correctly estimated by
analyzing the phase derivative calculated at the maximum of the convolution function.>™"” For a
different shape of potentials, see, for example, the barrier, the stationary phase method, depending
on the width of the potential and on the group velocity of the incoming particle, could break down.
There is a rich number of articles leading with this problem in standard quantum mechanics.'®

The results of this paper (a conclusion and outlooks are drawn in Sec. IV) shed some new
light on the properties of quaternionic potentials. In particular, it is explicitly shown how the
presence of a quaternionic perturbation modifies the momentum of the nonrelativistic incoming
particle and its reflection (transmission) time. The study presented in this paper represents a
starting point in view of a complete understanding of the behavior of wave packets impinging on
quaternionic potentials. A detailed analysis of this topic could be fundamental in looking for
experiments in which deviations from the complex quantum theory could be really seen. It is

0022-2488/2006/47(10)/102104/9/$23.00 47, 102104-1 © 2006 American Institute of Physics


http://dx.doi.org/10.1063/1.2359577
http://dx.doi.org/10.1063/1.2359577

102104-2 S. De Leo and G. C. Ducati J. Math. Phys. 47, 102104 (2006)

worth pointing out that the question of finding the best experimental proposal to prove the exis-
tence of quaternionic potentials is, at present, far from being solved and in this paper we aim to
contribute to this debate.
Il. REFLECTION AND TRANSMISSION COEFFICIENTS

The quaternionic Schrodinger equation in the presence of a constant potential is given by

iVi+jV,+kV;

P W(x,1) =V, (x,1), (1)

f
—W_(x,1) -
lzm XX(‘x )

where iV, +jV,+kV; represents the quaternionic generalization of the anti-Hermitian complex
potential iV,. For a complete discussion, see Ref. 1. This partial differential equation, by the
substitution

W(x,1) = D(x)exp[—iEt/ ki ], (2)

can be reduced to the following ordinary second order differential equation with constant quater-
nionic coefficients,

2
if—mq)"(x) —(iV, 4 jVy + kV3)D(x) = - D(x)Ei. (3)

The solution of the Schrodinger equation in the presence of constant quaternionic potential has
been matter of study in recent years.476 New mathematical techniques, essentially based on the
right eigenvalue problem for quaternionic operators,lo’12 allow us to obtain the solution without
the need to translate the quaternionic problem in its complex Counterpart.z’3 In particular, in the
presence of a potential step and for the diffusion case,

E>\Vi+ Vit V3,
the quaternionic plane wave solutions (for a detailed derivation, see Ref. 6) are as follows:
(I) Free region (x <0): ®,(x) =expliex] + rexp[—iex] + jrexp|ex];

(II) Potential region (x > 0): P, (x) = (1 +jw)t explip_x] + (W + j)T exp[— p,x], (4)

where

2m 2m %> V,—1iV;
e=\/—E, piZ\/— VE2-VA-VixV,), w=-i ,
ﬁZ ﬁZ( 2 3 1) E+\/E2—V§—V§

and

€ e—ip_€+i L ip_—e€
[1_|W|2_P_P+] —_ip

From the current conservation,

(W (x,0)W(x,1)],= %[\I_’(x,t)i\lfxx(x, ) +hcl], (3)

by recalling that we are considering stationary solutions of the Schrodinger equation, we obtain
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®(x)iP"(x) + h.c.=0.

This implies that the current density,

J(x) = D(x)id’ (x) + h.c., (6)

is a quantity independent of x. Due to the continuity of the wave function and its derivative, the
current density has to satisfy the following constraint:

Ji(0) = Jyy(0). (7)

By using the explicit form of the plane wave solutions given in Egs. (4), and the condition (7), a
straightforward calculation conduces to

R+T=1, (8)

where

R=|> and T=2=(1=|wP)iP.
€

Similar to the predictions of complex quantum mechanics, the incident particle has a nonzero
probability of turning back. Nevertheless, we know that in standard quantum mechanics no phase
is created by such reflection.'” The situation drastically changes in the presence of a quaternionic
perturbation. We shall come back to this point in Sec. III.

A. Reflection and transmission phases

From the stationary wave functions given in Egs. (4), we shall construct, by linear superpo-
sition, wave packets and we shall study their time evolution (see Sec. III). In this spirit, it is
convenient to rewrite the reflection and transmission coefficients in terms of their modulus and
phases. By simple algebraic manipulations, we find

L |le=p)le+p) - W€ = p_p,) ] + wl*€(p_+p,)*
[(e+p_)(e+p,) = W€+ p_p) T +|w[*€(p_ - p,)?

exp[i 6,-] >

= 2e(e+p,)
VI(e+ p e+ p) = WP(E +p_p) P+ [w*E(p_ - p,)?

explif], )

where

elp, + p)|wl? ) o
1&]

0,= arctan( (E— p_)(€+ P+) - |W|2(€2 - P—P+)

2
e(p, — p_)|wl ) (10)

0,= arctan( (e+p)(e+p,)—WHE+p_p,)

The important point to be noted here is the dependence on the energy, E, and the complex
imaginary part of the potential, V;, as expected from the standard quantum case, and the new
dependence on the modulus of the pure quaternionic part of the potential, |V,+iV3|. This last result
means that once fixed the modulus of the quaternionic perturbation any rotation in the plane
(V,,Vs) does not modify the reflection and transmission coefficients. The quaternionic rotation
invariance is due to the choice of i as the imaginary unit in the anti-Hermitian momentum
operator, i d,,/2m, which appears in the quaternionic Scrhédinger equation (1).
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B. The complex limit

The standard (complex) quantum results can be obtained by taking a simple limit case, i.e.,
V53— 0. In fact, by observing that

w—0,

V2’3—>0: /2m

we find
o
R=|r> and T=—t%,
€
where
€E— 0 2€
r= and = . (11)
e+o €e+o

As expected, the reflection and transmission coefficients (r and ¢) are real (6,=6,=0), and this
implies that there is no phase created by reflection or transmission.

C. The pure quaternionic limit

It is interesting to consider a second limit, i.e., V;— 0. This represents the case of a pure
quaternionic potential. Noting that

pr— p= —2\"E2—V§—V§,
Vi—=0=
| = 522
w|® — ,
€+ p?
we obtain
2p°
R=|r> and T=—t2,
4 6(62+pz)|
where
€E-p ) € €
= —=——; exp| i arctan| — and r=-. (12)
Ve +p p p

In this limit, the symmetry between reflection and transmission times is broken down. For a pure
quaternionic potential step, we find an instantaneous transmission but not an instantaneous reflec-
tion (we shall discuss in detail this point in Sec. III).

lll. STATIONARY PHASE METHOD

Until now, we have been concerned only with plane waves. In this Section, we are going to
study the time evolution of quaternionic wave packets and deducing from them several important
properties. The principle of superposition guarantees that every real linear combination of the
plane waves ®(x)exp[—iEt/ ] and D(x)exp[—iEt/h] will satisfy the Schrodinger equation in
the presence of a quaternionic potential step.

Let g(€) be a real convolution function with a maximum in €. In the free region (x<<0), the
superposition can be written as follows:
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Q(x,0) = f de g(e){expliex] + r exp[— iex] + j7 exp[ ex|lexp[ - i€ f t/2m], (13)

2m
€min = \/?\/vﬁ Vi+ Vi

The first term in Eq. (13) represents the incident wave, the second term the reflected wave and the
third term an evanescent wave. The phases for the incoming and reflected waves are

min

where

ht
Oplex,t] = ex— E€—,
2m

ht
Ol €:X,1] = — ex — E—+0,. (14)
2m

The stationary phase condition (the derivative with respect to € of the argument calculated in €,
equal to zero) enables us to calculate the position of the maximum of the incident and reflected
wave packets:

fie
XX(r) = —21,
m

he de,
x$?x(t)=—70t+ {EL' (15)

The maximum of the incident wave packet arrives at the step discontinuity at time =0 (as it
occurs in the complex case). During a certain interval of time, the wave packet is localized in the
region x ~ (. For large times the incident wave packet has practically disappeared and we only find
the reflected wave packet. It is important to observe that contrary to the predictions of complex
quantum mechanics (6,=0), the maximum of the reflected wave packets is found at x=0 at time
t=(m/ h €)[d6,/de€],. This means that in the presence of a quaternionic perturbation we do not
have an instantaneous reflection: for large times the maximum of the reflected wave packet is not
at —# €y¢t/m but is shifted with respect to this value by a quantity equal to [d6,/de],.
An analogous discussion for the transmitted wave packet (x>0),

Qulx,0) = J de g(e){t explip_x] + wi exp[— p,x]texp[— i€ #i t/2m] + j f de g(e){wr explip_x]

+7exp[— p.xllexp[— i€ h t/2m], (16)

where the phases to be considered are

. ht
0(1”)[E;x,t] =px—eE—+6,
2m

tra

4 ht \%

Hfg‘)[e;x, 1= p_x — €— + 6, + arctan -2 (17)
2m V3

leads to a similar conclusion for the transmitted time. Contrary to what happens in the standard

(complex) quantum mechanics, where there is an instantaneous transmission, in the presence of a

quaternionic potential step, the maximum of the transmitted wave packet,
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max ﬁEQ % d&
i (1) = { m {df}o}/{ de ]0’ s

is found at x=0 at time 1=(m/ % €,)[d6,/de],. At first glance, it could appear a logical consequence
of the result obtained for the reflection time. Nevertheless, it is important to note that 6, 6, and,
consequently, the symmetry between reflection and transmission times is always broken down. For
example, as it was explicitly shown in the previous section, instantaneous transmission does not
necessarily imply instantaneous reflection.

In order to simplify the discussion about the results obtained in our study, let us introduce the
following notation:

E—
Vo=\Vi+V3+V3,

and rewrite the maximum of the incident, reflected and transmitted wave packets in terms of E,
(the maximum value of the energy spectrum of the incoming particles)

2F,
A() = | 2
m
[2E, h de,
Xper (1) = —t+ ,
! m \2mv,

d

N

040

25, K | dg, [ %}
0

Xpa (=] \[—l=— =
m VszO d £ de
VO 0

The incident and reflected wave packets propagate, respectively, with velocities of v, and —v,

(19)

vo=\2Ey/m. (20)

This is the standard result obtained in complex quantum mechanics. For the transmitted wave

packet, the velocity is given by
dp_
vtra=vo/|:d_] . (21)
€ lo

Due to the fact that the quantity p_ has an additional dependence on |V,+iV;| with respect to the
standard dependence on V,, the complex and quaternionic formulations give different predictions.
For example, of particular interest, it is the comparison between the group velocity of the trans-
mitted wave packet for the complex case, V=V,

2m V,
vi;;_uo/< é—ﬁvo) =1, 1—E—‘O’, (22)

and that one for the pure quaternionic case, Vy=|V,+iVj|,

27 1/4 213/4
v&’a)=vo/{{e“—<2h—rg%> ] } =Uo[1—(%) } - (23)
€ 0

()

A first tmportant observation is that whereas v, is greater or smaller than v, depending on the
sign of Vy, v, Vis always smaller than the group velocity in the fre region. For incident particles
with an energy spectrum peaked in E,, with Ey>V,, the group velocities of the wave packet
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traveling in the potential region, (22) and (23), can be approximated by taking the first terms in

their Taylor expansions,
1V, 1(V,)? AR
v =yl 122 = <—O) +0 (—0> ,
2E, 8\E, E,

a1 22012

This means that a clear difference between the complex and the (pure) quaternionic case is
expected for the group velocity of a wave packet traveling in a region in which a small perturba-
tion is turned on. In this spirit, it is also interesting to compare the reflection and transmission
times,

—

V2mV, nax dé,
h re? (O) \/E s
d —_
Vo lo
2mVy de dp_
5 S (0) = - {E] : (24)
0

| E
d R
Vo Jo

Standard quantum mechanics predicts instantaneous reflection and transmission, i.e.,

(z)de(O) x(t)ma)((o) =0.

Xref tra

For a pure quaternionic potential, the transmission, in analogy to the complex case, is instanta-
neous,

xtrak)max (0) O

but the reflection time is different from zero (breaking down the instantaneity),

r 2 3/4 | -1
S o 2T
f Vol Vo Vo Vo

This predicts, for large times, that the maximum of the reflected wave packet should be found at
the left of the position predicted by standard quantum mechanics, i.e., —# €yt/m. For Ey>>V,, the
difference between the complex and (pure) quaternionic case is only manifest at the third order in

Vol Eo,
\2mV, _nax 1V, 3 Vo \*
Xref (0) +0|| >
#i EO E,

and, consequently, for small perturbations, we practically find an instantaneous reflection. It is
important to note that the shift in the position of the maximum of the reflected wave packet
becomes important when E, approaches V), this implies xij k) M¥%(0) — . Nevertheless, for incident
wave packets peaked in Ej~ V|, a more careful analysis is needed. In fact, in this limit new effects
have to be considered and these effects cannot be obtained by simply using the stationary phase

method. 2!

IV. CONCLUSIONS AND OUTLOOKS

The study presented in this paper, and based on the use of wave packets, represents, from our
point of view, a first important attempt to discuss deviations from the standard (complex) quantum
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FIG. 1. Fixing the value of Vy=|iV,+,;V,+kV;| and varying its complex component V,, the group velocity of the trans-
mitted wave packet (a) and the transmission/reflection times, (b) and (c) are plotted as a function of E,/V,, where E| is the
maximum of the energy spectrum of the incident wave packet. The analysis is done for diffusion phenomena (E,> V).

mechanics in the presence of quaternionic potentials. The wave packet formalism, with respect to
the previous analysis, essentially based on the plane wave solutions, surely gives a more “physi-
cal” focus. For example, this formalism allows us to explicitly show the effect that quaternionic
perturbations play in the momentum distribution of elementary particles and, in the particular case
of a potential step, to calculate the new reflection and transmission times due to quaternionic
interference phenomena. To emphasize the main differences between the complex and the quater-
nionic formulation of quantum mechanics for diffusion phenomena by a potential step, we have
given, in the previous section, a detailed discussion based on the analytic study of the group
velocities in the potential region and of the reflection time for complex and (pure) quaternionic
potentials.

Now, let us return to the discussion for the general case, i.e., a complex potential in the
presence of a quaternionic perturbation. In Fig. 1(a), fixing the value of V, and varying its
complex component V;, we draw

(@)
Utra — Utra

o (25)

Utra

as a function of E,/V,. The continuous line represents the case of a small complex component in
the quaternionic potential, consequently such a curve approximates the case of a pure quaternionic
potential,
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. ‘
vga>_v§3=< _ﬁ)1/4<1+ﬁ)3/4_1 N lﬁ_§<ﬂ)2+o (E)S
9 E, E, Ey>Vy2E, 8\E, E,) |’

Utra

It is also interesting to observe that the maximum of (vt(r’;k)—vg;)/ vfr’; is found at Ey=2V,,.

The plots in Fig. 1(b) and Fig. 1(c), respectively, show the behavior of the transmission and
reflection times as a function of E,/V,,. Let us list some results coming out from our analysis. The
quaternionic interefernce phenomena at the step discontinuity produce an new interesting effect in
the reflected and transmitted wave packets: the maxima of such packets are found at x=0 before
that the incident wave packet reaches the potential step discontinuity. The symmetry between
reflection and transmission time is broken down [see the amplification if Fig. 1(b) and Fig. 1(c)].

Evidently, all the physical consequences of our analysis, regardless of whether we use a
complex or a quaternionic potential in the Schrédinger equation deserve further investigation.
Nevertheless, we think that the discussion presented in this paper and based on the use of the wave
packet formalism represents the starting point for further theoretical studies and a fundamental
tool in looking for possible experimental deviations from standard (complex) quantum mechanics.
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