51 research outputs found

    Entry of B Cell Receptor into Signaling Domains Is Inhibited in Tolerant B Cells

    Get PDF
    Signal transduction through the B cell antigen receptor (BCR) is altered in B cells that express a receptor that recognizes self-antigen. To understand the molecular basis for the change in signaling in autoreactive B cells, a transgenic model was used to isolate a homogeneous population of tolerant B lymphocytes. These cells were compared with a similar population of naive B lymphocytes. We show that the BCR from naive B cells enters a detergent-insoluble domain of the cell within 6 s after antigen binding, before a detectable increase in BCR phosphorylation. This fraction appears to be important for signaling because it is enriched for lyn kinase but lacks CD45 tyrosine phosphatase and because the BCR that moves into this domain becomes more highly phosphorylated. Partitioning of the BCR into this fraction is unaffected by src family kinase inhibition. Tolerant B cells do not efficiently partition the BCR into the detergent-insoluble domain, providing an explanation for their reduced tyrosine kinase activation and calcium flux in response to antigen. These results identify an early, regulated step in antigen receptor signaling and self-tolerance

    RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    Get PDF
    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    Restoration of IFNγR Subunit Assembly, IFNγ Signaling and Parasite Clearance in Leishmania donovani Infected Macrophages: Role of Membrane Cholesterol

    Get PDF
    Despite the presence of significant levels of systemic Interferon gamma (IFNγ), the host protective cytokine, Kala-azar patients display high parasite load with downregulated IFNγ signaling in Leishmania donovani (LD) infected macrophages (LD-MØs); the cause of such aberrant phenomenon is unknown. Here we reveal for the first time the mechanistic basis of impaired IFNγ signaling in parasitized murine macrophages. Our study clearly shows that in LD-MØs IFNγ receptor (IFNγR) expression and their ligand-affinity remained unaltered. The intracellular parasites did not pose any generalized defect in LD-MØs as IL-10 mediated signal transducer and activator of transcription 3 (STAT3) phosphorylation remained unaltered with respect to normal. Previously, we showed that LD-MØs are more fluid than normal MØs due to quenching of membrane cholesterol. The decreased rigidity in LD-MØs was not due to parasite derived lipophosphoglycan (LPG) because purified LPG failed to alter fluidity in normal MØs. IFNγR subunit 1 (IFNγR1) and subunit 2 (IFNγR2) colocalize in raft upon IFNγ stimulation of normal MØs, but this was absent in LD-MØs. Oddly enough, such association of IFNγR1 and IFNγR2 could be restored upon liposomal delivery of cholesterol as evident from the fluorescence resonance energy transfer (FRET) experiment and co-immunoprecipitation studies. Furthermore, liposomal cholesterol treatment together with IFNγ allowed reassociation of signaling assembly (phospho-JAK1, JAK2 and STAT1) in LD-MØs, appropriate signaling, and subsequent parasite killing. This effect was cholesterol specific because cholesterol analogue 4-cholestene-3-one failed to restore the response. The presence of cholesterol binding motifs [(L/V)-X1–5-Y-X1–5-(R/K)] in the transmembrane domain of IFNγR1 was also noted. The interaction of peptides representing this motif of IFNγR1 was studied with cholesterol-liposome and analogue-liposome with difference of two orders of magnitude in respective affinity (KD: 4.27×10−9 M versus 2.69×10−7 M). These observations reinforce the importance of cholesterol in the regulation of function of IFNγR1 proteins. This study clearly demonstrates that during its intracellular life-cycle LD perturbs IFNγR1 and IFNγR2 assembly and subsequent ligand driven signaling by quenching MØ membrane cholesterol

    Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope

    Get PDF
    The atomic force microscope (AFM) and the transmission electron microscope (TEM) have been used to study the morphology of isolated mouse thymocyte microdomains and Thy-1 antigen distribution at the surface of these structures. AFM images were recorded in air in the contact mode on membrane vesicles deposited on previously heated tissue culture plastic sheets and indirectly immunolabeled for Thy-1 expression with colloidal gold-conjugated secondary antibodies. AFM images of untreated plastic plates showed a very characteristic network of streaks 20–200 nm wide. Heating the plastic removed the streaks and provided flat surfaces (r.m.s. 1 nm). This substrate allowed strong adsorption and homogeneous spreading of the vesicles and easy manipulations during immunolabeling experiments. Vesicles flattened on the substrate without losing their morphology. The 10-nm membrane-bound gold beads were reproducibly imaged without degradation by repeated tip scanning. The observed microdomains had a mean diameter of 184 +/- 76 nm, and 65% of them were specifically labeled. Images obtained with the TEM on the same vesicles, deposited on carbon-coated grids and negatively stained, confirmed the AFM observations. The size distribution of the microdomains was quite similar, but the number of beads per vesicle was significantly higher, and 76% of the vesicles were labeled. The difference may be explained 1) by removal of beads from the vesicles in the additional washing step with water, which was necessary for the AFM; 2) by tip-sample convolution; and 3) by statistical fluctuations

    Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains.

    No full text
    T-cell receptors (TCRs) upon binding to peptide-MHC ligands transduce signals in T lymphocytes. Tyrosine phosphorylations in the cytoplasmic domains of the CD3 (gammadeltaepsilon) and zeta subunits of the TCR complex by Src family kinases initiate the signaling cascades via docking and activation of ZAP-70 kinase and other signaling components. We examined the role of the low-density detergent-insoluble membranes (DIMs) in TCR signaling. Using mouse thymocytes as a model, we characterized the structural organization of DIMs in detail. We then demonstrated that TCR engagement triggered an immediate increase in the amount of TCR/CD3 present in DIMs, which directly involves the engaged receptor complexes. TCR/CD3 recruitment is accompanied by the accumulation of a series of prominent tyrosine-phosphorylated substrates and by an increase of the Lck activity in DIMs. Upon TCR stimulation, the DIM-associated receptor complexes are highly enriched in the hyperphosphorylated p23 zeta chains, contain most of the TCR/CD3-associated, phosphorylation-activated ZAP-70 kinases and seem to integrate into higher order, multiple tyrosine-phosphorylated substrate-containing protein complexes. The TCR/CD3 recruitment was found to depend on the activity of Src family kinases. We thus provide the first demonstration of recuitment of TCR/CD3 to DIMs upon receptor stimulation and propose it as a mechanism whereby TCR engagement is coupled to downstream signaling cascades

    Transgenic mice expressing high levels of soluble TNF-R1 fusion protein are protected from lethal septic shock and cerebral malaria, and are highly sensitive to Listeria monocytogenes and Leishmania major infections

    No full text
    Mice bearing a transgene coding for a soluble tumor necrosis factor receptor type 1 (TNFR1)-FcIgG3 fusion protein and placed under the control of the alpha-1-antitrypsin gene promoter were generated. Depending on the mouse line, blood levels of the protein ranged from 25 ng/ml to over 100 micrograms/ml; this level of expression was most often transmitted to the transgene-bearing progeny as a relatively stable feature. High-expressor mice were completely resistant to lipopolysaccharide-induced shock and lethality, including after D-galactosamine sensitization, and mice expressing about 1 microgram of the fusion protein/ml were partially (60%) protected. In contrast, mice expressing less than 0.1 microgram of the protein/ml were more sensitive than controls with respect to incidence and time of death, even though the biological activity of serum tumor necrosis factor (TNF) was partially neutralized. High-expressor mice of the adequate genetic background were markedly, although not completely, protected from death by cerebral malaria after injection with Plasmodium berghei. They were highly susceptible to Listeria monocytogenes, dying from bacterial dissemination after sublethal infection, and to Leishmania major, displaying severe, non-healing lesions after local infection. Under the same conditions, mice expressing about 1 microgram protein/ml were only partially sensitive to these last agents, compared to non-transgenic littermate mice which were fully resistant. These transgenic mice represent a model of permanent, complete or partial, impairment of TNF use, which compares favorably, for ease of breeding and for the range of effects, to mice bearing gene disruptions
    • …
    corecore