122 research outputs found

    Trauma: An Ideology in Search of Evidence and its Implications for the Social in Social Welfare

    Get PDF
    A recent special issue of this journal focussed on the emergence of the Adverse Childhood Experiences (ACEs) movement as a key driver of Scottish social policy. In this article, we extend the critiques advanced therein by locating ACEs within a wider cultural turn towards psychological trauma which, over the past decade, has become reified as a master theory across social welfare. Yet, the concept is insubstantial and ill-defined, and the claims made for policy based upon it are at best disputable. Its prominence is less evidence-based than it is testimony to how a particular (cultural and professional) ideology, regardless of its intellectual merit, can be insinuated into policy discourse. ACEs, we suggest, is utilised to provide the trauma paradigm with some ostensibly quantifiable substance. We illustrate our argument through reference to the Scottish Government’s National Trauma Training Programme (2020). We go on to consider some of the implications of such ideological capture for the direction of Scottish social welfare policy and practice. The prominence given to trauma perspectives has potentially iatrogenic consequences for those identified or self-identifying as traumatised. At a wider level, it reflects a professional and epistemic privileging of a narrow, ostensibly therapeutic, worldview which, in turn, acts to marginalise ‘the social’ that characterised erstwhile Scottish approaches to welfare

    Surface viscoelasticity in model polymer multilayers: From planar interfaces to rising bubbles

    Get PDF
    International audienceIn the present work a polymeric transient viscoelastic network is used as a model system to investigate several fundamentals of interfacial viscoelasticity and non-linear behavior, in simple shear, compression and for simple mixed deformations. A supramolecular polymer bilayer, characterized by long but finite relaxation times, is created at the water-air interface using a layer-by-layer assembly method. The possibility of studying the individual layers starting from an unstrained reference state enabled the independent quantification of the equilibrium ther-modynamic properties, and the viscoelastic response of the bilayer could be studied separately for shear and compressional deformations. Time-and frequency-dependent material functions of the layer were determined in simple shear and uniform compression. Moreover, a quasi linear neo-Hookean model for elastic interfaces was adapted to describe step strain experiments on a viscoelastic system by allowing the material properties to be time-dependent. The use of this model made it possible to calculate the response of the system to step deformations. Within the linear response regime, both stress-strain proportionality and the superposition principle were investigated. Furthermore, the onset of non-linear behavior of the extra stresses was characterized in shear and for the first time in pure compression. We conclude by investigating the multilayer system in a rising bubble setup and show that the neo-Hookean model is able to predict the extra and deviatoric surface stresses well, up to moderate deformations

    Large and non-linear permeability amplification with polymeric additives in hydrogel membranes

    Full text link
    Hydrogels which are hydrophilic and porous materials have recently emerged as promising systems for filtration applications. In our study, we prepare hydrogel membranes by the photopolymerization of a mixture of poly (ethylene glycol) diacrylate (PEGDA) and large poly(ethylene glycol) (PEG) chains of 300 000 g.mol-1 in the presence of a photoinitiator. We find that this addition of free PEG chains induces a large and non-linear increase of the water permeability. Indeed, by changing the content of PEG chains added, we obtain variations of the hydrogel water permeability over two orders of magnitude. The highest water permeability values are obtained for the membranes when the PEG concentration is equal to its critical overlap concentration C*. Moreover, we find that the flow rate of water through the membranes varies non-linearly with the pressure. We relate this result to the deformability of the membranes as the applied pressure leads to a compression of the pores. This study provides new perspectives for the design of flexible hydrogel membranes with controlled permeability and their application in water treatment and bioseparation

    Sieving and clogging in PEG-PEGDA hydrogel membranes

    Full text link
    Hydrogels are promising systems for separation applications due to their structural characteristics (i.e. hydrophilicity and porosity). In our study, we investigate the permeation of suspensions of rigid latex particles of different sizes through free-standing hydrogel membranes prepared by photopolymerization of a mixture of poly (ethylene glycol) diacrylate (PEGDA) and large poly (ethylene glycol) (PEG) chains of 300 000 g.mol-1 in the presence of a photoinitiator. Atomic force microscopy (AFM) and cryoscanning electron microscopy (cryoSEM) were employed to characterize the structure of the hydrogel membranes. We find that the 20 nm particle permeation depends on both the PEGDA/PEG composition and the pressure applied during filtration. In contrast, we do not measure a significant permeation of the 100 nm and 1 Ό\mum particles, despite the presence of large cavities of 1 Ό\mum evidenced by cryoSEM images. We suggest that the PEG chains induce local nanoscale defects in the cross-linking of PEGDA-rich walls separating the micron size cavities, that control the permeation of particles and water. Moreover, we discuss the decline of the permeation flux observed in the presence of latex particles, compared to that of pure water. We suggest that a thin layer of particles forms on the surface of the hydrogels

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710

    Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    Get PDF
    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typically reveal either suppressed or drastically enhanced EAA symmetry depending mainly on the horizontal extent of the heat flux anomaly. Our results suggest that the length scale of the anomaly should be on the same order as the outer core radius to significantly affect flow and field symmetries. As an implication to Mars and in the range of our model, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heterogeneously magnetise the crust to the present-day level of north–south asymmetry on Mars. The resulting magnetic fields obtained using our model either are not asymmetric enough or, when they are asymmetric enough, show rapid polarity inversions, which are incompatible with thick unidirectional magnetisation
    • 

    corecore