1,563 research outputs found
The geometric measure of entanglement for a symmetric pure state with positive amplitudes
In this paper for a class of symmetric multiparty pure states we consider a
conjecture related to the geometric measure of entanglement: 'for a symmetric
pure state, the closest product state in terms of the fidelity can be chosen as
a symmetric product state'. We show that this conjecture is true for symmetric
pure states whose amplitudes are all non-negative in a computational basis. The
more general conjecture is still open.Comment: Similar results have been obtained independently and with different
methods by T-C. Wei and S. Severini, see arXiv:0905.0012v
Effect of nonnegativity on estimation errors in one-qubit state tomography with finite data
We analyze the behavior of estimation errors evaluated by two loss functions,
the Hilbert-Schmidt distance and infidelity, in one-qubit state tomography with
finite data. We show numerically that there can be a large gap between the
estimation errors and those predicted by an asymptotic analysis. The origin of
this discrepancy is the existence of the boundary in the state space imposed by
the requirement that density matrices be nonnegative (positive semidefinite).
We derive an explicit form of a function reproducing the behavior of the
estimation errors with high accuracy by introducing two approximations: a
Gaussian approximation of the multinomial distributions of outcomes, and
linearizing the boundary. This function gives us an intuition for the behavior
of the expected losses for finite data sets. We show that this function can be
used to determine the amount of data necessary for the estimation to be treated
reliably with the asymptotic theory. We give an explicit expression for this
amount, which exhibits strong sensitivity to the true quantum state as well as
the choice of measurement.Comment: 9 pages, 4 figures, One figure (FIG. 1) is added to the previous
version, and some typos are correcte
A morphometric analysis of vegetation patterns in dryland ecosystems
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems
The chain rule implies Tsirelson's bound: an approach from generalized mutual information
In order to analyze an information theoretical derivation of Tsirelson's
bound based on information causality, we introduce a generalized mutual
information (GMI), defined as the optimal coding rate of a channel with
classical inputs and general probabilistic outputs. In the case where the
outputs are quantum, the GMI coincides with the quantum mutual information. In
general, the GMI does not necessarily satisfy the chain rule. We prove that
Tsirelson's bound can be derived by imposing the chain rule on the GMI. We
formulate a principle, which we call the no-supersignalling condition, which
states that the assistance of nonlocal correlations does not increase the
capability of classical communication. We prove that this condition is
equivalent to the no-signalling condition. As a result, we show that
Tsirelson's bound is implied by the nonpositivity of the quantitative
difference between information causality and no-supersignalling.Comment: 23 pages, 8 figures, Added Section 2 and Appendix B, result
unchanged, Added reference
High-sensitivity optical measurement of mechanical Brownian motion
We describe an experiment in which a laser beam is sent into a high-finesse
optical cavity with a mirror coated on a mechanical resonator. We show that the
reflected light is very sensitive to small mirror displacements. We have
observed the Brownian motion of the resonator with a very high sensitivity.Comment: 4 pages, 4 figures, RevTe
Cooling of a mirror by radiation pressure
We describe an experiment in which a mirror is cooled by the radiation
pressure of light. A high-finesse optical cavity with a mirror coated on a
mechanical resonator is used as an optomechanical sensor of the Brownian motion
of the mirror. A feedback mechanism controls this motion via the radiation
pressure of a laser beam reflected on the mirror. We have observed either a
cooling or a heating of the mirror, depending on the gain of the feedback loop.Comment: 4 pages, 6 figures, RevTe
Produtos alternativos no controle do oídio em mudas de eucalipto.
A silvicultura brasileira tem empregado o eucalipto pela sua adaptabilidade, rápido crescimento e produtividade, além de possuir outras características como a qualidade, diversidade e adequação de sua madeira para a indústria. Para tal, existe a necessidade de uma produção contínua de mudas, as quais podem ser atacadas pelo fungo Oidium sp. O controle do oídio é feito com fungicidas, mesmo não havendo produtos registrados para o eucalipto. O objetivo deste trabalho foi avaliar produtos alternativos (sais e tanino, óleos, extratos de plantas, leite e derivados, e antagonistas) para o controle desta doença comparando os mais promissores com fungicida. Os produtos foram pulverizados em mudas de Eucalyptus benthamii Maiden & Cambage e mantidas em casa-de-vegetação com alto potencial de inóculo de Oidium sp. A severidade da doença foi avaliada por meio de uma escala de notas de 0 (ausência de sintomas) a 4 (sintomas muito severo) e calculada a área abaixo da curva de progresso da doença (AACPD). Verificou-se que, os menores valores de AACPD de oídio foram obtidos com piraclostrobina + epoxiconazol, que controlou 92 % da doença, e os melhores produtos alternativos testados foram o leite de vaca e Lecanicillium sp. que controlaram respectivamente 36,5 % e 33,9 % da doença no ensaio comparativo
Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion
We consider 1-qubit mixed quantum state estimation by adaptively updating
measurements according to previously obtained outcomes and measurement
settings. Updates are determined by the average-variance-optimality
(A-optimality) criterion, known in the classical theory of experimental design
and applied here to quantum state estimation. In general, A-optimization is a
nonlinear minimization problem; however, we find an analytic solution for
1-qubit state estimation using projective measurements, reducing computational
effort. We compare numerically two adaptive and two nonadaptive schemes for
finite data sets and show that the A-optimality criterion gives more precise
estimates than standard quantum tomography.Comment: 15 pages, 7 figure
- …
