748 research outputs found

    The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity

    Get PDF
    The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus

    Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning

    Get PDF
    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10[superscript 5].National Institutes of Health (U.S.) (Grant 9P41EB015871-26A1)National Institutes of Health (U.S.) (Grant 5R01EY017656-02)National Institutes of Health (U.S.) (Grant 5R01 NS051320)National Institutes of Health (U.S.) (Grant 4R44EB012415-02)National Science Foundation (U.S.) (Grant CBET-0939511)Singapore-MIT Alliance for Research and TechnologyMIT Skoltech InitiativeHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT (Bridge Project Initiative

    Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase

    Get PDF
    hSMUG1 (human single-stranded selective monofunctional uracil-DNA glyscosylase) is one of three glycosylases encoded within a small region of human chromosome 12. Those three glycosylases, UNG (uracil-DNA glycosylase), TDG (thymine-DNA glyscosylase), and hSMUG1, have in common the capacity to remove uracil from DNA. However, these glycosylases also repair other lesions and have distinct substrate preferences, indicating that they have potentially redundant but not overlapping physiological roles. The mechanisms by which these glycosylases locate and selectively remove target lesions are not well understood. In addition to uracil, hSMUG1 has been shown to remove some oxidized pyrimidines, suggesting a role in the repair of DNA oxidation damage. In this paper, we describe experiments in which a series of oligonucleotides containing purine and pyrimidine analogs have been used to probe mechanisms by which hSMUG1 distinguishes potential substrates. Our results indicate that the preference of hSMUG1 for mispaired uracil over uracil paired with adenine is best explained by the reduced stability of a duplex containing a mispair, consistent with previous reports with Escherichia coli mispaired uracil-DNA glycosylase. We have also extended the substrate range of hSMUG1 to include 5-carboxyuracil, the last in the series of damage products from thymine methyl group oxidation. The properties used by hSMUG1 to select damaged pyrimidines include the size and free energy of solvation of the 5-substituent but not electronic inductive properties. The observed distinct mechanisms of base selection demonstrated for members of the uracil glycosylase family help explain how considerable diversity in chemical lesion repair can be achieved

    The actin-bundling protein fascin is overexpressed in colorectal adenomas and promotes motility in adenoma cells in vitro

    Get PDF
    Background: Fascin is overexpressed in many cancers, including colorectal, but its role in the malignant transformation of benign colorectal adenomas is unclear. Methods: Immunohistochemical analysis of fascin expression was carried out in resected human colorectal adenoma specimens. The effects of forced overexpression of fascin on adenoma cell motility were also analysed. Results: We show fascin overexpression in adenomas increasing with tumour size, histological type, and degree of dysplasia and increased cell motility in adenoma cell lines following fascin transfection. Conclusion: These data suggest an important role for fascin in the malignant progression of colorectal tumours

    Synthetic biology: Building the language for a new science brick by metaphorical brick

    Get PDF
    Changes in the biosciences and their relations to society over the last decades provide a unique opportunity to examine whether or not such changes leave traces in the language we use to talk about them. In this article we examine metaphors used in English-speaking press coverage to conceptualize a new type of (interdisciplinary) bioscience: synthetic biology. Findings show that three central metaphors were used between 2008 and May 2010. They exploit social and cultural knowledge about books, computers and engines and are linked to knowledge of three revolutions in science and society (the printing, information and industrial revolutions). These three central metaphors are connected to each other through the concepts of reading/writing, designing and mass production and they focus on science as a revolutionary process rather than on the end results or products of science. Overall, we observed the use of a complex bricolage of mixed metaphors and chains of metaphors that root synthetic biology in historical events and achievements, while at the same time extolling its promises for the future. Β© 2011 Copyright Taylor and Francis Group, LLC

    How to Stimulate Single Mothers on Welfare to Find a Job: Evidence from a Natural Experiment

    Get PDF
    We present the results from a natural experiment in which single mothers on welfare were stimulated to find a job. Two policy instruments were introduced: an earnings disregard and job creation. The experiment was performed at the level of municipalities in The Netherlands, a country with relatively high benefits and low incentives for single mothers to leave welfare for work. In our analysis, we make a distinction between native and immigrant welfare recipients. For immigrant single mothers and some groups of native single mothers we find a positive employment effect of an earnings disregard. Job creation in addition to the earnings disregard increased working hours for some groups of single mothers. Although the outflow from welfare was not affected, welfare expenditures were reduced

    Ξ±-Actinin and Filamin Cooperatively Enhance the Stiffness of Actin Filament Networks

    Get PDF
    BACKGROUND: The close subcellular proximity of different actin filament crosslinking proteins suggests that these proteins may cooperate to organize F-actin structures to drive complex cellular functions during cell adhesion, motility and division. Here we hypothesize that alpha-actinin and filamin, two major F-actin crosslinking proteins that are both present in the lamella of adherent cells, display synergistic mechanical functions. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rheology, we find that combining alpha-actinin and filamin is much more effective at producing elastic, solid-like actin filament networks than alpha-actinin and filamin separately. Moreover, F-actin networks assembled in the presence of alpha-actinin and filamin strain-harden more readily than networks in the presence of either alpha-actinin or filamin. SIGNIFICANCE: These results suggest that cells combine auxiliary proteins with similar ability to crosslink filaments to generate stiff cytoskeletal structures, which are required for the production of internal propulsive forces for cell migration, and that these proteins do not have redundant mechanical functions
    • …
    corecore