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Abstract

A high throughput 3D image cytometer have been developed that improves imaging speed by an 

order of magnitude over current technologies. This imaging speed improvement was realized by 

combining several key components. First, a depth-resolved image can be rapidly generated using a 

structured light reconstruction algorithm that requires only two wide field images, one with 

uniform illumination and the other with structured illumination. Second, depth scanning is 

implemented using the high speed remote depth scanning. Finally, the large field of view, high 

NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, 

high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at 

submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy 

of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging 

from 1:1 to 1:105.
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Flow cytometry allows statistical analysis of a large population of cells (1). Flow cytometry 

is particularly powerful for characterizing the biochemical states of individual cells, such as 

whether particular proteins are expressed, based on fluorometric assays. The key strength of 

flow cytometry is speed that can routinely process 10,000 cell/sec; processing speed up to 

© 2014 International Society for Advancement of Cytometry

Correspondence to: Peter T. C. So, 500 Technology Sq, NE47-279, Cambridge, MA 02139, USA. ptso@mit.edu. 

NIH Public Access
Author Manuscript
Cytometry A. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Cytometry A. 2015 January ; 87(1): 49–60. doi:10.1002/cyto.a.22584.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78062932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


100,000 cell/sec has also been demonstrated (2). A drawback of flow cytometry is that it 

provides little morphological information to more fully determine the phenotype of 

individual cells. Image cytometry was developed to address this need by performing high 

content assays providing both rich morphological and biochemical information (3–8). The 

increased information content is traded-off with reduced speed; image cytometry typically 

has throughput several orders of magnitude slower than flow cytometry. Image cytometry 

has found numerous applications in biology and pharmacology. As demonstrated by Bakal 

et al. morphological analysis of cell shape allows association of protein expression with 

mechanistic steps of cell migration (4). Perlman et al. have first shown that morphological 

responses of cells allow the classification of drugs and to identify mechanisms of new drugs 

(7).

A number of 2D image cytometers have been introduced with different instrument 

complexity and performance (9). Most of the commercially available systems deal with 

adherent cell types that are plated either on slide glasses or multi-well plates. For non-

adherent cells, imaging flow cytometry has been developed to capture two dimensional 

images of floating cells as they are transported through the fluidic channel similar to the 

flow cytometry. The state of the art system can achieve 1,000 cell/sec imaging rate in bright 

field, dark field, and fluorescence simultaneously by imaging multiple cells with an 

extended depth of field of focus (10). Imaging flow cytometer has also been extended for in 

vivo detection of rare circulating cells (11). More recently, an exciting technique based on 

serial time-encoded in amplified ultrafast pulses has achieved frame rate up to 1 MHz for 

gray scale 2D images (12).

An important extension of image cytometry system is the addition of 3D resolution. 3D 

imaging capability can improve quantification of morphological features even in 2D cell 

culture environments. For example, 3D image cytometry can allow more accurate 

quantification of the number of DNA double stand breaks in cell nuclei that are often related 

to carcinogenic potential of cellular environment. DNA double strand breaks can be detected 

by immunofluorescent labeling of proteins such as H2AX (13). Double strand breaks 

associated with labeled H2AX appear as foci that are distributed in 3D. For nuclei with 

dense H2AX foci, foci on different depth but with overlapping lateral coordinates can be 

hard to distinguish with traditional 2D image cytometry. As another example, optically 

sectioned 3D imaging is required to study the stem cell differentiation process that is often 

co-cultured on a feeder cell layer (14). There are many other cases where 3D imaging can 

provide better quantification of cytometric features such as cell size, shape, and volume 

(15). Beyond 2D culture, 3D resolved images further enable studying of cells in tissue 

environment in situ. Since cells in tissue interact with and are regulated by their extracellular 

matrix, cells cultured in 3D matrix can better mimic the behavior of cells in tissue than cells 

cultured in 2D well plate or slide glass. For example, cell–matrix interaction has proven to 

be an important factor in determining the outcome of the nerve regeneration (16). In these 

3D systems, image cytometer with 3D sectioning can better quantify cellular behavior in 

their native state. Today, most 3D image cytometers are based on the laser scanning 

microscopy such as confocal microscopy. Both spinning disk and line scanning confocal 

microscopy have been applied for frame rate improvement (17). 3D imaging based on multi-

photon excitation has also been deployed for deeper imaging in more opaque tissue 
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specimen (18–20). The throughput in multiphoton imaging mode has been improved by 

scanning multiple foci in parallel or by using high speed polygonal mirror scanner (21). 

Recent advances in optical clearing technology have opened doors for studying whole 

organs on the single cellular level without sectioning (22–24).

In this article, we introduce a new implementation of high throughput 3D image cytometer 

based on structured light widefield (WF) fluorescence imaging coupled with high speed 

remote depth scanning. For almost confluent 2D cell cultures, this system can image at 

about 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 

20 min. The throughput of this system is over an order of magnitude faster than state-of the-

art commercial 3D image cytometers in terms of the number of resolvable pixel per second. 

The operation of this system is validated by performing high speed 3D imaging of 2D cell 

cultures and in thin 3D tissue sections. We have further demonstrated quantitative 

performance of this system in counting rare cells successfully detecting sub-population with 

dilution down to 1:105.

Materials and Methods

High Throughput 3D Image Cytometer

Figure 1a shows the schematic layout of the 3D image cytometer. Three diode-pumped solid 

states lasers (CNI laser, Changchun, P.R. China) with emission wavelengths of 473 nm, 561 

nm, and 660 nm, respectively, were used as light sources enabling the excitation of a broad 

range of fluorophores. The three laser outputs were combined into one collinear beam using 

the laser beam multiplexers (LM01-503-25, LM01-613-25, Semrock, Rochester, NY). 

Photobleaching was minimized by gating the excitation light with an optical shutter (Ch-61, 

EOPC, Ridge-wood, NY) synchronizing sample exposure with the integration period of the 

camera. The diffractive optical element (DOE) (DS-033-Q-Y-A, HOLO/OR, Rehovot, 

Israel) split the beam into +1 and −1 orders and minimized the power loss into 0th and 

higher orders (efficiency : 78% (473 nm), 80% (561 nm), 69% (660 nm)). Since the two 

beams generated by DOE reached the focal plane of the objective (W Plan-Apochromat ×20 

1.0 N.A. water, Zeiss, Thornwood, NY) via a common path, interference resulted in a stable 

fringe pattern enabling structured light illumination (SLI) and produced structured 

illumination images (SI). Uniform illumination images (UI) were generated by blocking one 

of the excitation beam path with another optical shutter (Ch-61, EOPC). This fast optical 

shutter was triggered by an external Transistor-Transistor Logic (TTL) signal and allowed 

switching between UI and SI at speed up to 50 Hz. A quad-band dichroic mirror 

(FF410/504/582/669 -Di01-25×36, Semrock) was used to separate the excitation beam from 

the emitted fluorescence signal. A quad-band emission filter (FF01-440/521/607/700-25, 

Semrock) was placed right in front of the detector blocking any stray excitation light 

reflected from the intermediate optical elements. The z-scanning of the sample was 

performed remotely by first forming a perfect 3D image of the sample in the focal space of 

the remote focusing objective (CFI Plan Apochromat Lambda ×20 0.75 N.A. air, Nikon, 

Melville, NY) and then by scanning a mirror in the axial direction with a piezo actuator. The 

intermediate image formed at the focal plane of L8 was relayed to the imaging detector after 

×1.5 magnification. Up to 40 axial planes for both SI and UI can be imaged in one second 

Choi et al. Page 3

Cytometry A. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



with this implementation. Different color channels can be selected by a filter wheel with 

three band pass filters (FF01-520/35, FF01-609/54, FF01-692/40, Semrock). sCMOS 

camera (PCO.EDGE 5.5, PCO, Kelheim, Germany) recorded a field of view with size of 

420 μm × 350 μm at maximum 100 frame per second at 2,560 × 2,160 pixelation. When the 

bit depth of a pixel was 16 bit, the total data rate was ~1 GB/sec. Since the writing speeds of 

the currently available hard drives, including solid state ones, were limited to about 400 MB/

sec, multiple hard drives were set up in a RAID 0 configuration to record the data in parallel 

which effectively increased the writing speed and storage capacity. Data acquisition 

followed a typical sequence. For a given field of view, a z stack of SI images were first 

acquired and a stack of UI images were acquired by blocking one illumination beam with 

the fast shutter. A fast motorized stage (SCAN IM 120×100-2 mm, Marzhauser, Wetzlar, 

Germany) then translated the sample to the next field of view with settling time below 100 

msec. Afterward, the same data acquisition sequence was repeated. The data acquisition 

procedures were fully automated according to the timing diagram as shown in Figure 1b and 

controlled by the custom-made control software written in C# programming language.

Structured Light Illumination for Depth-Resolved Widefield Imaging

Many SLI have been developed to select a particular imaging plane and to reject out-of-

focus background using a standard wide-field fluorescence microscope (25,26). Of these 

methods, one effective approach we adapted is termed “HiLo microscopy” which generates 

an optically sectioned image by post-processing using only one UI and one SI (26). The 

HiLo algorithm is based on an assumption that 2D image can be divided into low lateral 

frequency and high lateral frequency contents. Since the high lateral frequency contents 

always have depth resolution by the nature of the incoherent wide-field point spread 

function (PSF), the goal of using SLI is to encode the in-focus low frequency contents, 

especially the zero lateral frequency component, with high frequency SLI. More 

specifically, the in-focused high frequency contents are extracted by high-pass filtering UI 

with a Gaussian shaped high-pass filter. The in-focus low frequency contents are extracted 

by low-pass filtering the absolute of SI after subtracting it from UI. The cutoff frequency of 

the Gaussian filter is determined by the sinusoidal spatial frequency of the structured 

illumination. Subsequently, the optically sectioned image is obtained by combining these 

two filtered images with an adjustable scalar factor so that the transition from low to high 

frequencies occur smoothly (27). HiLo microscopy has been widely used in the context of 

the background rejection for light-sheet microscopy (27,28), temporally focused WF two 

photon microscopy (29), and depth-resolved microrheology (30). Comparing HiLo approach 

with other structured light methods, most other structured light methods require taking more 

images. For example, phase shifting SLI using three images has been implemented in 

commercial 3D image cytometer (31). Further, the 3D reconstruction fidelity of phase 

shifting SLI depends on phase shifting accuracy that is often limited by actuation speed 

rending this approach less compatible with high throughput cytometry. In our 

implementation of HiLo SLI, switching between SI and UI can be performed in high speed 

by just shuttering one of the two beams with a fast optical shutter without the need for any 

precise actuation. In addition, HiLo method is insensitive to the motion artifact of a sample 

since the precise phase control is not required. Figure 2 shows one example how the HiLo 

method can be used for rejecting the background signal. The fringe pattern projected on the 
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in-focused part of the sample is visible as shown in Figure 2b. HiLo processing removed the 

common background from out-of-focal regions and produced clearer image as shown in 

Figure 2c.

Axial Resolution of the SLI Measured with a Thin Rhodamine Solution

Theoretical axial resolution of SLI can be estimated using the defocused 2D optical transfer 

function (OTF) derived by Stokseth (32).

(1)

where f(m) = 1 − 0.69m + 0.076m2 + 0.043m3, m is the normalized fringe frequency and is 

related to the real fringe period Tg via m = λ/(Tg NA), NA = n sin(α) and u is the normalized 

defocus and is related to the actual defocus z via u = 4kzn sin2(α/2), k = 2π/λ. In incoherent 

detection, OTF represents the contrast of the fringe detected at the image plane and is 

equivalent to the signal generated when a thin sheet of fluorescence is scanned through the 

focus. Ideally, the best optical sectioning is achieved when the normalized fringe frequency 

comes close to unity (33). However, as the fringe frequency is increased the modulation 

depth is reduced which in turn reduces the signal-to-noise ratio.

As a demonstration of depth resolution of this approach, we translated a thin film of 

Rhoadmine solution through the focal plane. A florescent solution was prepared by first 

dissolving Rhodamine power (Rhodamine 6G, Sigma-Aldrich, St. Louis, MO) in alcohol 

and diluted to 300 μM concentration. Then, a drop of Rhodamine solution was placed on a 

slide glass and covered with a cover slip and squeezed to form a meniscus around the edge 

of the cover slip. The thickness of film was estimated from the ratio of the known volume of 

the drop of Rhodamine solution and the area of the coverslip; the target thickness should be 

less than the theoretical axial resolution of the optical system. Figure 3 shows the radially 

integrated fluorescence intensity at each depth in the vicinity of the focal plane of the 

objective for this thin sheet of fluorescent solution obtained with WF and SLI imaging, 

respectively. In case of WF imaging, the integrated fluorescence from each z plane was 

constant, which implies WF did not provide depth information for an object with zero lateral 

spatial frequency. This is caused by the “missing cone” effect of the OTF in WF 

fluorescence microscopy where there is no frequency support for the zero lateral frequency 

component. Practically, this means there is no discrimination against out-of-focus 

background resulting in significant decrease of the signal-to-background ratio. In confocal 

microscopy, the pinhole conjugated to the focal point filters out this background. In SLI, the 

SI acts analogously as a virtual, digital pinhole to filter out, computationally, the low 

frequency out-of-focus background beyond the depth-of-field of the objective. For fringe 

period of 1.3 μm, Eq. (1) predicts that the axial intensity distribution has a full-width-at-half-

maximum (FWHM) of 1.28 μm in satisfactorily agreement with experimental value of 1.84 

± 0.05 μm.
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High Speed Remote Depth Scanning

For volumetric imaging, the microscope objective is typically translated in the axial 

direction using a piezo-scanner. However, direct objective scanning is relatively slow 

because of the large inertia of the objective. Although volumetric imaging has been 

demonstrated by resonantly driving the objective piezo scanner at 10 Hz (34), the resulting 

vibration can transmit through the immersion medium and may induce motion artifacts in 

biological specimens. One way to improve the scanning speed without sample disturbance is 

to form a perfect 3D image of an object remotely and sequentially scanning the remotely 

formed 3D image in the axial direction with a small light-weight mirror driven by a piezo 

actuator (35). Perfect 3D imaging can be achieved by designing the imaging system such 

that it satisfies both the sine and the Herschel condition. As a consequence of these 

constraints, the lateral and the longitudinal magnifications of the imaging system becomes 

equal to the ratio of the immersion media refractive indices of the object and the image 

space (36). As proposed by Botcherby et al. (35), the perfect 3D imaging system can be 

constructed by ensuring that the intermediate optical elements satisfy Eq. (2) which can be 

derived from the perfect imaging condition.

(2)

where f1 and f2 are the focal length of the imaging and the remote focusing objective 

respectively. n1 and n2 are the refractive index of the immersion medium in object and 

image space respectively. M1 and M2 are the magnification of the objectives. F1 and F2 are 

the nominal focal length of the objectives.

Practically, the pupil plane of the imaging objective (W Plan-Apochromat ×20 1.0 N.A. 

water, Zeiss) should be imaged onto the pupil plane of the remote focusing objective (CFI 

Plan Apochromat Lambda ×20 0.75 N.A. air, Nikon) by a 4-f system consisting of a Zeiss 

tube lens with 164.5 mm focal length (58–452, Edmund Optics, Barrington, NJ) and an 

achromatic doublet with 150 mm focal length (AC504-150-A, Thorlabs, Newton, NJ) such 

that the phase distortion induced by the imaging objective can be cancelled out by the equal 

amount of negative phase distortion induced by the remote focusing objective. This 

arrangement should result in a distortion-free 3D image to be formed with isotropic 

magnification in all directions (37). The axial scanning was performed by moving the mirror 

(NT68-321, Edmund Optics) attached to the piezo actuator (P-830.10, Physik Instrumente, 

Auburn, MA). The travel range of the current piezo actuator was 15 μm, which corresponds 

to 22.5 μm scanning range in the object space taking into account the magnification ratio. 

Since an air immersion objective (ROBJ, see Fig. 1) was chosen for remote focusing, very 

minimal mechanical disturbance was induced even for high speed scanning. Since the ROBJ 

was designed for imaging through a 170 μm coverslip, a coverslip was placed in between 

ROBJ and the remote focusing mirror to minimize spherical aberration. To improve the 

detection efficiency of the unpolarized fluorescence emission light, a λ/4 plate (2-APW-L/

4-018A, Altechna, Vilnius, Lithuania) and a broadband polarizing cube beamsplitter 

(10FC16PB.3, New-port, Irvine, CA) were used as shown in Figure 1a, which can collect up 

to 50% of the unpolarized emission light. However, since excitation light is polarized and 
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emission dipole is often aligned with excitation dipole, there are emission light losses by a 

polarizing beam splitter but is often much less than 50%.

The PSF of the remote focusing system was measured by imaging 0.5 μm fluorescent beads 

immersed in 2% Agarose gel at axially different locations through the focal region of the 

imaging objective (OBJ, see Fig. 1). After a bead was placed at the focal plane of the 

objective, the position of the bead relative to the focal plane of the objective was varied by 

moving the objective manually which was mounted on the micrometer driven translation 

stage (SM1Z, Thorlabs). The positive direction corresponded to the objective moving away 

from the bead and the negative direction corresponded to the objective moving closer to the 

bead. At each position of the objective, the remote focusing mirror was scanned axially for a 

uniformly illuminated excitation beam to record the full diffraction pattern of a single bead. 

Figure 4 shows the PSFs from −100 μm to 100 μm at 20 μm interval. Slight asymmetry was 

observed in the PSF of the bead located at the focal plane. We further observed that as the 

bead was translated away from the focal plane, its PSF was further elongated consistently. 

Both observations were consistent with the presence of spherical aberration. This aberration 

may partly originate from the indices mismatch between the objective immersion liquid and 

the agarose gel surrounding the bead. This aberration may also partly originate from the 

incomplete phase distortion cancellation between the imaging objective and the remote 

focusing objective. Finally, since the remote focusing theory was based on the linear 

approximation with the point source near the focal plane, deviation from linearity may also 

partly account for the increasing PSF distortion away from the focal plane (37).

Results and Discussion

Extracting 3D Morphological Information from Thin Tissue Sections and 2D Cell Cultures

3D resolved imaging capability of this cytometer was demonstrated in biological specimens. 

Figure 5 shows the 3D image stacks of a mouse kidney section (F-24630, Molecular Probe, 

Grand Island, NY) obtained with the uniform illumination (Fig. 5a) and the same section 

after the HiLo processing (Fig. 5b). Elements of the glomeruli and convoluted tubules 

labeled with Alexa Fluor® 488 wheat germ agglutinin were excited with the 473nm laser 

line and the emission light was detected with 520 nm/35 nm band pass filter (FF01-520/35, 

Semrock). The filamentous actin prevalent in glomeruli and the brush border labeled with 

red-fluorescent Alexa Fluor 568 phalloidin was excited with the 561 nm laser line and the 

emission light was detected with the 609 nm/54 nm band pass filter (FF01-609/54, 

Semrock). The out-of-focus background that blurs images was removed in the HiLo 

processed images and consequently the contrast was improved.

High resolution subcellular organelle features can also be quantified. Morphological features 

such as nuclear size, perimeter of the cytoplasm, and 3D distribution of the protein can be 

extracted and statistically processed to provide morphological context caused by 

physiological changes. As shown in Figure 6a, the 3D map of the mitochondria can be 

measured to study the metabolic states of the cells. As another example, high throughput 3D 

image cytometer was used in an image informatics to study transforming growth factor beta 

(TGFβ) signaling in determining fibroblast-myofibroblast differentiation in collagen scaffold 

matrix. Figure 6b shows the fibroblast activated by TGFβ resulting in a cascade of SMAD 
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protein signaling that consequently resulted in higher expression of α-smooth actin, 

abundant stress fiber formation, and an increase in cell-scaffold traction.

The developed 3D image cytometer can also acquire a large sample size at submicron 

resolution where the size limit is only constrained by the scanning range of the motorized 

stage. Figure 7 shows a section of the whole mouse kidney that was imaged with 473 nm 

laser line and 520 nm/35 nm band pass filter. Total 16 × 16 field of views (FOVs) were 

stitched together in the post processing. This data clearly demonstrates that this image 

cytometer can maintain high spatial resolution during large field of view imaging.

Rare Cell Detection in 2D Cell Culture

The quantitative performance of this image cytometer was further characterized by counting 

rare cell subpopulations in culture (21). The ability to detect a rare cell can potentially find 

applications in cancer diagnosis. For example, there are about 1–10 circulating tumor cell 

(CTC) out of 1 million white blood cells (38). As the cancer progresses, the number of CTC 

in the blood stream increases. The ability to detect CTC in early stage of cancer requires a 

high throughput system that can screen out CTC in a short time scale.

2D cell culture preparation—A549 human alveolar adeno-carcinoma cells transfected 

with histone H2B-mCherry cDNA for nuclear staining were maintained in two T75 flasks 

(Nun-clon Δ Surface) in Dulbecco’s modified Eagle medium (Gibco, Invitrogen, Grand 

Island, NY) supplemented with 10% fetal bovine serum (Gibco, Invitrogen) and 1% 

penicillin–streptomycin. Puromycin 0.01% was added for the selection of mCherry-

expressing cells with the medium change every 36–48 h. To prepare rare cells with 

cytoplasm staining prior to the imaging, one of the flasks of the grown cells were labeled 

with 5-chloromethylfluorescein diacetate (CMFDA Cell Tracker ™ Green, Invitrogen, 

Grand Island, NY) and incubated for 20 min, and then replaced with serum free culture 

medium for another 20 min. For passage, cells at 70–80% confluency were detached from 

both flasks by treating with 0.05% trypsin–ethylenedinitriletetraacetic acid (Trypsin–EDTA) 

at 37°C in an incubator for 3 min. Medium was then added to inhibit the enzymatic reaction 

of Trypsin–EDTA. Sub-culture seeding density was kept at 2–3 × 104 cells/ml. In one group 

of cells, nuclei were expressing with mCherry with emission peak at 560 nm. In the other 

group of cells, cytoplasm was labeled with CMFDA with emission peak at 520 nm in 

addition to the nuclei staining. The latter group of cells with both nuclei and cytoplasm 

labeling played the role of the rare cells. The two groups of cells, detached using the 

aforementioned procedure for passage, were re-suspended to two cell suspensions of 104 

cells/μl. Imaging samples were prepared using the two cell suspensions with a range of 

mixing ratios: 1:1, 1:10, 1:102, 1:103, 104, and 1:105. The mixed populations of cells were 

plated in a 8-well chamber and incubated for about 6 h, with each well chamber containing 

about 5 × 104 cells. It should be noted that at least 20 rare cells were used to generate the 

specified ratios to achieve reasonable statistical accuracy. For example, in the sample of 

1:105 ratio, the total number of cells was 2 million and the number of rare cells was about 

20. All cell samples were fixed using 4% paraformaldehyde (PFA) and maintained in 

phosphate buffered saline (PBS) to be used for long-term imaging.
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Data acquisition and analysis—The typical image acquisition procedure of the 3D cell 

cytometer was as follows. For a single field of view with size of 420 μm × 350 μm, SI image 

stack was first acquired with the SLI generated by the interference of the two beams with 

shutter (OS2) open and then for the same FOV the UI image stack was acquired with the 

uniform illumination by blocking one of the beam with shutter (OS2) closed. The motorized 

stage then translated the sample to the next FOV and the same sequence for acquiring UI 

and SI image stack was repeated until the whole sample area was covered. For the multi-

color imaging, the above procedure was repeated for each detection color selected by the 

band pass filter wheel. To maintain the immersion medium in place during the stage 

scanning, a water chamber was constructed around the imaging objective lens and filled up 

with immersion medium.

A representative 3D image of rare cell sample at 1:1 mixing ratio is shown in Figure 8. For 

the rare cell detection experiment, the prepared samples of two group of cells mixed at 

different ratios were imaged with uniform illumination. Before starting the image 

acquisition, the tilting of the sample holder was adjusted to ensure that the whole imaging 

area remained in focus over the scanning range of the motorized stage. Cytoplasm labeled 

with Cell Tracker Green was excited with the 473 nm laser line and the emission light was 

imaged with 520 nm/35 nm band pass filter (FF01-520/35, Semrock). Nucleus labeled with 

m-Cherry was excited with the 561 nm laser line and the emission light was imaged with the 

609 nm/54 nm band pass filter (FF01-609/54, Semrock). Figure 9 shows the representative 

image of 1:104 sample. The acquired image was processed to count the number of cell in 

each population. The cell counting algorithm was implemented in MATLAB (MathWorks, 

Natick, MA). The image processing algorithm requires fairly extensive discussion and is 

included as an Appendix. Figure 10 shows the rare cell counting results. The expected ratio 

and the corresponding measured ratio is plotted in log scale in both x and y axis. The 

accurate correlation between the expected ratio and the measured ratio can be confirmed 

from the slope (0.9299) and the goodness-of-fit (R2 = 0.9964) of the linear regression line. 

This result demonstrates the capability of the developed system for detecting rare cell 

populations down to a ratio of 1:105.

Conclusions

This paper presents a high throughput 3D image cytometer dedicated for cell cultures and 

thin tissue sections based on the optically sectioned SLI WF fluorescence imaging and the 

high speed remote depth scanning. These features combined the use of high NA, large FOV 

objective and large pixilation, high frame rate sCMOS camera resulting in a highly 

optimized 3D image cytometer. The developed system enables image cytometry 

investigation to study cultured cell morphologies with statistical significance comparable to 

the flow cytometer. For a highly confluent cells, this system can image at about 800 cell/sec 

in 3D at submicron resolution. Compared to the commercially available high throughput, 

high contents 3D cytometer, that are either based on confocal microscopy or three-phase SLI 

microscopy, the developed system enables an order of magnitude faster throughput in terms 

of the number of resolvable point per second. The statistical rare cell detection accuracy of 

this instrument is verified by quantifying populations down to 1:105.
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Appendix: Image Processing Procedure

Flat-Field Correction

The raw images acquired by the cytometer system were generally affected by the field 

inequality of the illumination FOV caused by the non-uniform intensity distribution of the 

excitation laser beam profile. Therefore, B-spline based technique was employed to fit for 

the excitation pattern and normalize the intensity distribution over the FOV before image 

mosaicing. Since the high throughput imaging often involves sample with the length scale of 

on the order of tens of millimeters which corresponds to a 104 times of a FOV, a completely 

data driven approach was employed to determine the background as well as signal pattern. 

We used a combined additive and multiplicative model to normalize the FOV. First, the 

background was approximated by taking the minimum projection greater than a predefined 

noise level of the detector over all the images of the sample (IBG). Second, the illumination 

pattern was approximated by the mean projection of the same image set after capping the 

pixels with photon count greater than a predefined threshold in order to account for the 

significantly brighter regions (IS). Then, the flat-field correction was estimated for each 

image I (for each FOV) using Eq. (A.1).

(A.1)

where IBBG is the 2D B-spline fitted to IBG and IBS is the 2D B-spline fitted to IS.

Image Mosaicing

The flat field corrected images were then stitched together using a maximum cross 

correlation based algorithm (39) to generate an image mosaic for each sample. The images 

were first arranged in a 2D matrix according to the scan pattern of the motorized stage and 

the neighboring images were overlapped according to the extent of overlap introduced 

during image acquisition. Due to the limited accuracy of the stage positioning there were 

slight changes in the overlap in the different regions of the image mosaic. Hence for each 

boundary between two FOVs in the image matrix the size of overlap was changed in a 

sequence of steps in both X and Y directions in a predefined range and the cross correlation 

coefficient was calculated for each step. The XY position, which resulted in the maximum 

cross correlation coefficient, was chosen as the best overlap for the particular boundary 

between the particular FOVs. This procedure was repeated for all the boundaries between all 

the images (FOVs) in the mosaic to generate the final stitched image of the sample.
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Segmentation and Cell Counting Algorithm

The cell counting algorithm was designed according to the labeling of the culture. All the 

cells contain the nucleus label and hence, it was used to detect and count the total number of 

cells in the sample. The rare cells containing the cytoplasm label were imaged in a separate 

channel and it was used in conjunction with the nucleus to separate the rare cells from the 

normal ones.

Figure A.1. 
Cell counting pipeline: (a) nuclei counting, (b) rare cell counting. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]

The algorithm for nuclei segmentation and counting is as follows. The nuclei of the cells 

labeled using mCherry were exited using a 561 nm laser line and were imaged in one 

channel (nucleus channel). First, the stitched image of the nucleus channel was applied with 

a maximum cutoff intensity, i.e. all the pixels with greater photon count than the cutoff was 

assigned as the cutoff photon count. Second, the resulting image was spatially filtered using 

a circular averaging filter to smooth the image. Then, morphological opening (40) using a 

circular structuring element was applied on the image. These steps preprocess the original 

image to help identify local intensity peaks, which were used to count the number of nuclei 

in the sample. Then, the extended maxima transform, which was used to find local maxima 

on the h-maxima transform (41), was performed to identify the intensity peaks representing 

the nuclei. The number of connected components of the resulting binary image were counted 

to determine the number of nuclei, and hence the number of cells, in the sample. The nuclei 

counting pipeline is shown in Figure A.1a.

The algorithm for counting rare cell with cytoplasmic label is as follows. In order to count 

the number of cytoplasm labeled cells, the stitched image from the cytoplasm channel was 

first segmented using a predefined threshold and then morphological opening was performed 
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on the resulting binary image. This threshold was kept in a low enough value to include all 

the labeled cells since the counting accuracy should be high enough to detect the rare cell to 

normal cell ratio for all the samples with extreme mixing ratios such as 1:104 and 1:105. 

However this resulted in the inclusion of a significant fraction of false positives and hence 

further refining was necessary to separate true positives from false positives. Therefore, we 

characterized the true positive, i.e. cytoplasm and nucleus labeled cells using multiple image 

features of two channels. The image features used were, cell area (region enclosing from the 

cell boundary and is a measurement of cell volume), mean photon count of the cell area in 

cytoplasm channel, maximum photon count of the cell area in cytoplasm channel, the degree 

of overlap of the corresponding nucleus (nuclei for cell clusters), and the area ratio of the 

corresponding nucleus and the cytoplasm. Measuring the above features required proper 

cytoplasm and nucleus segmentation and therefore we applied a level-sets algorithm (42) to 

determine the correct segmentation boundary of the cytoplasm and the nucleus. The binary 

images from the nuclei counting and the cytoplasm thresholding were used as the starting 

points for the level-sets. For the clustered regions of the sample the above step determines 

the cluster boundary.

In order to separate the cells in the cell clusters we applied watershed (43) on the distance 

transform of a combined binary images resulting from the extended maxima transform and 

the level-sets of the nucleus channel according to the following equations (Fig. A1b)

Here DEX and DLS are respectively distance transforms of resulting binary image, BWEX 

from nuclei counting step and resulting binary image and complement of BWLS from 

nucleus segmentation using level sets. D is the combined distance image and BWN is the 

final nuclei segmentation after cluster splitting using watershed on D. Finally, the correctly 

segmented nucleus and cytoplasm channels were used to measure the previously explained 

image features for each cytoplasm labeled segment and this multi-dimensional feature vector 

was thresholded to filter out the false positives and count the number of nuclei that includes 

label in the corresponding cytoplasm channel. The entire rare cell counting pipeline is 

shown in Figure A1b.
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Figure 1. 
(a) Schematic diagram of the high throughput 3D image cytometer. M: mirror, DM: dichroic 

mirror, DOE: diffractive optical element, OS1: optical shutter for minimizing the 

photobleaching effect, OS2: optical shutter for generating UI and SI, PBS: polarizing beam 

splitter cube, FW: filter wheel with three emission filter, QWP: quarter-wave plate, FW: 

bandpass filter wheel, EmF: emission filter, PA: piezo actuator, FFP: front focal plane, OBJ: 

imaging objective (Zeiss 20× Water NA1.0), ROBJ: remote focusing objective (Nikon 20× 

Air NA0.75). (b) Representative timing diagram for acquiring 10 images of both SI and UI 

per FOV. The motorized stage is triggered on the rising edge of TTL signal (blue). The 

shutter 2 opens for high TTL signal (green), which allows two beams from DOE to interfere 

at the focal plane for SLI and closes for low TTL signal, which blocks one of the beam from 

DOE to generate a UI. Piezo actuator moves at discrete step depending on the command 

voltage signal (red). The camera acquires a frame at each rising edge of the TTL signal 

(cyan) in synchrony with the piezo position. The camera triggering signal starts after 90 

msec delay from the stage triggering signal due to the settling time of the stage. [Color 

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2. 
Background rejection with HiLo algorithm. The sample is a section of the mouse kidney 

with 15 μm thickness. (a) Uniformly illuminated image (UI). (b) In-focused high frequency 

contents extracted by high-pass filtering UI with a Gaussian shaped high-pass filter. (c) 

Structurally illuminated image (SI). (d) In-focus low frequency contents extracted by low-

pass filtering the absolute of SI after subtracting it from UI. (e) HiLo processed image 

obtained by combining (b) and (d) with an adjustable scalar factor.
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Figure 3. 
Optical sectioning effect measured with thin sheet of Rhodamine solution. The integrated 

fluorescence intensity per z plane for both WF and HiLo is plotted as a function of the 

distance from the focal plane. Theoretical axial response is plotted using Eq. (1). [Color 

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4. 
PSFs of the remote focusing system. PSF is measured with 0.5 μm fluorescent beads at 

different depth near the focal plane of the imaging objective (OBJ). (a) xz sectional plot. (b) 

Normalized intensity plot along z for the negative direction (the objective moving closer to 

the bead). (c) Normalized intensity plot along z for the positive direction (the objective 

moving away from the bead). [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 5. 
3D image stack of mouse kidney obtained with (a) uniform illumination and (b) after HiLo 

processing. Green color represents elements of the glomeruli and convoluted tubules labeled 

with Alexa Fluor® 488 wheat germ agglutinin. Red color represents the filamentous actin 

prevalent in glomeruli and the brush border labeled with red-fluorescent Alexa Fluor 568 

phalloidin. Forty slices of z-stack images are acquired at 0.5 μm z-step size with 20 msec 

exposure time per z-section. Image stack is generated from a central portion of full field of 

view to better visualize the background rejection effect. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. 
(a) 3D image of the muntjac skin fibroblast cells (F36925, Invitrogen). The green color 

represents filamentous actin labeled with green fluorescent Alexa Fluor 488 phalloidin. The 

red color represents mitochondria labeled with an anti-OxPhos Complex V inhibitor protein 

mouse monoclonal antibody in conjunction with orange fluorescent Alexa Fluor 555 goat 

anti-mouse IgG. (b) TGFβ activated fibro-blast cells. Green color represents actin filament 

labeled with rhodamine phalloidin and blue color represents SMAD protein labeled with 

Alexa Fluor 488. 40 slices of z-stack images are acquired at 0.5 μm z-step size with 20 msec 

exposure time per z-section. Image stack is generated from a central portion of full field of 

view to better visualize the detailed structure of the cellular organelles. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7. 
Multiscale view of mouse kidney. 1× image is stitched with 16 × 16 FOVs where a FOV is 

420 μm × 350 μm. Area marked with white square is zoomed in successively.
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Figure 8. 
Representative 3D image of rare cell sample at 1:1 mixing ratio. Cells with only mCherry 

label only appear as blue nuclei and the other cells with both mCherry and Cell Tracker 

Green labels appear as blue nuclei in green cell bodies. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Figure 9. 
Representative image of 1:104 ratio sample where the nucleus is labeled with m-Cherry 

(represented as blue color) and the cytoplasm is labeled with Cell Tracker Green 

(represented as green color). The size of single FOV is 420 μm × 350 μm and the image 

shown is part of the 1:104 ratio sample where 20 × 15 FOVs are stitched together. [Color 

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10. 
Rare cell subpopulation counting result with various mixture ratios from 1:1 down to 1:105. 

Measured ratio (in y-axis) is plotted against the expected ratio (in x-axis). [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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