2,840 research outputs found

    Incorporating Ambipolar and Ohmic Diffusion in the AMR MHD code RAMSES

    Full text link
    We have implemented non-ideal Magneto-Hydrodynamics (MHD) effects in the Adaptive Mesh Refinement (AMR) code RAMSES, namely ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test and the Alfven wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics

    Multibranch Bogoliubov-Bloch spectrum of a cigar shaped Bose condensate in an optical lattice

    Get PDF
    We study properties of excited states of an array of weakly coupled quasi-two-dimensional Bose condensates by using the hydrodynamic theory. The spectrum of the axial excited states strongly depends on the coupling among the various discrete radial modes in a given symmetry. By including mode-coupling within a given symmetry, the complete excitation spectrum of axial quasiparticles with various discrete radial nodes are presented. A single parameter which determines the strength of the mode coupling is identified. The excitation spectrum in the zero angular momentum sector can be observed by using the Bragg scattering experiments.Comment: to apper in Phys. Rev.

    Gate-controlled nuclear magnetic resonance in an AlGaAs/GaAs quantum Hall device

    Full text link
    We study the resistively detected nuclear magnetic resonance (NMR) in an AlGaAs/GaAs quantum Hall device with a side gate. The strength of the hyperfine interaction between electron and nuclear spins is modulated by tuning a position of the two-dimensional electron systems with respect to the polarized nuclear spins using the side-gate voltages. The NMR frequency is systematically controlled by the gate-tuned technique in a semiconductor device.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Alternate two-dimensional quantum walk with a single-qubit coin

    Get PDF
    We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {\bf 106}, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the non-localized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states, in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of xx-yy spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.Comment: 9 pages, 9 figures, RevTeX

    Measurement-induced generation of spatial entanglement in a two-dimensional quantum walk with single-qubit coin

    Full text link
    One of the proposals for the exploitation of two-dimensional quantum walks has been the efficient generation of entanglement. Unfortunately, the technological effort required for the experimental realization of standard two-dimensional quantum walks is significantly demanding. In this respect, an alternative scheme with less challenging conditions has been recently studied, particularly in terms of spatial-entanglement generation [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. Here, we extend the investigation to a scenario where a measurement is performed on the coin degree of freedom after the evolution, allowing a further comparison with the standard two-dimensional Grover walk.Comment: 9 pages, 4 figures, RevTeX

    Saturation of Magnetorotational Instability through Magnetic Field Generation

    Full text link
    The saturation mechanism of Magneto-Rotational Instability (MRI) is examined through analytical quasilinear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the alpha effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.Comment: 9 pages, 10 figures to appear in ApJ, Jun 2009, 10 v69

    Quantum Hall line junction with impurities as a multi-slit Luttinger liquid interferometer

    Full text link
    We report on quantum interference between a pair of counterpropagating quantum Hall edge states that are separated by a high quality tunnel barrier. Observed Aharonov-Bohm oscillations are analyzed in terms of resonant tunneling between coupled Luttinger liquids that creates bound electronic states between pairs of tunnel centers that act like interference slits. We place a lower bound in the range of 20-40 ÎĽ\mum for the phase coherence length and directly confirm the extended phase coherence of quantum Hall edge states.Comment: 4 pages, 3 figures, 1 tabl
    • …
    corecore