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Multibranch Bogoliubov-Bloch spectrum of a cigar-shaped Bose condensate in an optical lattice
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We study properties of excited states of an array of weakly coupled quasi-two-dimensional Bose condensates
by using the hydrodynamic theory. The spectrum of the axial excited states strongly depends on the coupling
among the various discrete radial modes in a given symmetry. By including mode coupling within a given
symmetry, the complete excitation spectrum of axial quasiparticles with various discrete radial nodes are
presented. A single parameter which determines the strength of the mode coupling is identified. The excitation
spectrum in the zero angular momentum sector can be observed by using the Bragg scattering experiments.

DOI: 10.1103/PhysRevA.72.053623 PACS number�s�: 03.75.Lm, 03.75.Kk, 32.80.Lg

I. INTRODUCTION

The experimental realization of optical lattices �1� is
stimulating new perspectives in the study of cold bosons.
Optical lattices have enabled us to observe quantum phe-
nomena such as number squeezing �2�, collapses and revivals
�3�, and the diffraction of matter waves �4�. Apart from these
examples, BEC in optical lattices are particularly promising
physical systems to study the superfluid properties of Bose
gases �5,6�. The Bose-Hubbard model has been realized and
the quantum phase transition from superfluid to a Mott insu-
lator state was indeed observed experimentally �7–9�. It was
predicted that for deep optical lattices the condensate super-
flow can be lost not only by energetic instability but also by
dynamical instability �10–12�. The dynamic instability was
verified by the experiments �13�. In a seminal work by
Kramer et al. �14�, they have found the mass renormalization
in presence of the optical potential which decreases the value
of the axial excitation frequencies. These discrete axial exci-
tation frequencies are experimentally verified �15�. There are
several theoretical calculations �16–19� for the sound veloc-
ity in a quasi-one-dimensional �1D� Bose gas placed in an
1D optical lattice.

The axial excitations of a cigar shaped condensate can be
divided into two regimes: �i� short wavelength excitations
where wavelength is much smaller than the axial size and �ii�
long wavelength excitations where wavelength is equal or
larger than the axial size of the system. In the former case,
these excitations can be classified with a continuous wave
vector k. However, the finite transverse size of the conden-
sate also produces a discreteness of the spectrum. The short
wavelength axial phonons with different number of discrete
radial modes of a cigar shaped condensates �without optical
lattice� give rise to the multibranch Bogoliubov spectrum
�MBS� �20,21�. The MBS was observed in a Bragg spectros-
copy with a long duration of the Bragg pulses �22�. An array
of weakly coupled quasi-two-dimensional condensates can
be created by applying a relatively strong one-dimensional
optical lattices to an ordinary three-dimensional cigar shaped
condensate along the symmetry axis. In the presence of the
periodic lattices, the MBS can be called as multibranch
Bogoliubov-Bloch spectrum �MBBS�. It is useful to study
the MBBS in view of the possibility of the experimental
verification. It should be noted that all the modes in a given

angular momentum sector are coupled among themselves for
any finite value of the axial momentum. For example, when
we excite the system to study the sound propagation along
the symmetry axis, this perturbation inherently excites all
other low energy transverse modes having zero angular mo-
mentum. Therefore, all modes are coupled with each other in
the same angular momentum sector. Martikainen and Stoof
�23� have studied the MBBS only for monopole and lowest
energy quadrupole modes without considering the coupling
among the various modes within a given symmetry by means
of time-dependent Gaussian variational ansatz. Later, Marti-
kainen and Stoof �24� have calculated the spectrum of the
phonon and the monopole modes by considering only the
coupling between the phonon and the breathing modes. But
it is noted that the sound mode is coupled not only with the
breathing mode but also with other low-energy modes having
zero angular momentum. Similarly, the lowest-energy quad-
rupole mode is also coupled with other low-energy quadru-
pole modes. There is a lack of complete study on the MBBS
in this system. For complete and correct description of
MBBS we have to consider the couplings among all low-
energy modes in the same angular momentum sector. In our
discretize hydrodynamic description, the couplings among
all the modes in the same angular momentum sector are in-
cluded naturally and we will see in the next section.

In this work we study the excitations in a stack of weakly
coupled quasi-two-dimensional condensates. The multi-
branch Bogoliubov-Bloch spectrum of such system is pre-
sented by using the hydrodynamic theory. The MBBS
strongly depends on the coupling between the inhomoge-
neous density in the radial plane and the density modulation
along the symmetry axis. Note that one can study only the
spectrum of sound, monopole and quadrupole modes without
considering the mode coupling completely by using the time-
dependent Gaussian variational method. Our discretize hy-
drodynamic method presented in this paper goes beyond the
time-dependent variational method. In principle, we can cal-
culate all low-energy spectrum by including the mode cou-
pling in a given angular momentum sector as long as the
excitation energies are less than the chemical potential. We
find that the multibranch Bogoliubov-Bloch spectrum
changes due to presence of the mode-coupling within a given
angular momentum symmetry. Therefore, the mode-coupling
should be taken into account while calculating the spectrum
correctly.
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This paper is organized as follows. In Sec. II, we consider
an array of weakly coupled quasi-two-dimensional Bose con-
densates. Using the discretize hydrodynamic theory, we cal-
culate the multibranch Bogoliubov-Bloch spectrum by in-
cluding the mode coupling within a given symmetry. We
give a brief summary and conclusions in Sec. III.

II. MBBS OF A NON-ROTATING ARRAY
OF BOSE CONDENSATES

We assume that the bosonic atoms, at T=0, are trapped by
an external potential given by the sum of a harmonic trap and
a stationary optical potential modulated along the z axis. The
Gross-Pitaevskii energy functional can be written as

E0 =� dV�†�r,z��−
�2

2M
�2 + Vho�r,z� +

g

2
���r,z��2

+ Vop�z����r,z� . �1�

Here, Vho�r ,z�= �M /2���r
2r2+�z

2z2� is the harmonic trap po-
tential and Vop�z�=sErsin2�qz� is the optical potential where
Er=�2q2 /2M is the recoil energy, s is the dimensionless pa-
rameter determining the laser intensity and q is the wave
vector of the laser beam. Also, g=4�a�2 /M is the strength
of the two-body interaction energy, where a is the two-body
scattering length. We also assumed that �r��z so that
it makes a long cigar shaped trap. The minima of the optical
potential are located at the points zj = j� /q= jd, where
d=� /q is the lattice size along the z axis. Around these
minima, Vop�z�	�M /2��s

2�z−zj�2, where the layer trap fre-
quency is �s=
s�q2 /M. In the usual experiments, the well
trap frequency is larger than than the axial harmonic fre-
quency, �s��z. Therefore, we can also ignore the harmonic
potential along the z-axis since the deep optical lattice domi-
nates over the harmonic potential along the z axis.

The strong laser intensity will give rise to an array of
several quasi-two-dimensional condensates. Because of the
quantum tunneling, the overlap between the wave functions
between two consecutive layers can be sufficient to ensure
full coherence. If the tunneling is too small, the strong phase
fluctuations will destroy the coherence and lead to a new
quantum state, namely Mott insulator state.

In the presence of coherence among the layers it is natural
to take the ansatz for the wave function as

��x,y,z� = �
j

� j�x,y�f�z − zj� . �2�

Here, � j�x ,y� is the wave function of the two-dimensional
condensate at the site j and f�z−zj� is a localized function at
jth site. The localized function can be written as

f�z − zj� = �M�s

��
1/4

e−�M�s/2���z − zj�
2
. �3�

Substituting the above ansatz into the energy functional and
considering only the nearest-neighbor interactions, one can
get the following energy functional:

E0 = �
j
� dxdy�−

�2

2M
� j

†�r
2� j + Vho�� j�2�

+
g2D

2 �
j
� dxdy� j

†� j
†� j� j − J �

j,�=±1
� dxdy�� j+�

† � j

+ � j
†� j+�� . �4�

Here, J is the strength of the Josephson coupling between
adjacent layers which is given as

J = −� dzf�z��−
�2

2M
�z

2 + Vop�z�� f�z + d�

	 ��r� �ar


2�
2

��2 − 4�se−�2
s/4, �5�

where ar=
� /M�r. Also, the strength of the effective on-site
interaction energy is g2D=g�dz�f0�z��4=4
� /2��2 /M�
��a /as�, where as=
� /M�s. Equation �4� shows that each
layer j is coupled with the nearest-neighbor layers j±1
through the tunneling energy J. The axial dimension appears
through the Josephson coupling between two adjacent layers.
The Hamiltonian corresponding to the above energy func-
tional is similar to an effective 1D Bose-Hubbard Hamil-
tonian in which each lattice site is replaced by a layer with
radial confinement.

The Heisenberg equation of motion for the bosonic order
parameter is

i��̇ j = �−
�2

2M
�r

2 + Vho + g2D� j
†� j�� j − J�� j−1 + � j+1� .

�6�

Using the phase-density representation of the bosonic field
operator as � j =
nje

i	j and neglecting the quantum pressure
term, one can get the following equations of motion for the
density and phase:

ṅj = −
�

M
�r · �nj�r	 j� +

2J

�
�
njnj−1sin�	 j − 	 j−1�

− 
njnj+1sin�	 j+1 − 	 j�� �7�

and

�	̇ j = −
�2

2M
��r	 j�2 + J�
nj+1

nj
cos�	 j+1 − 	 j�

+
nj−1

nj
cos�	 j − 	 j−1�� − Vho − g2Dnj . �8�

Here, “˙” represents the time derivative. In equilibrium, the
condensate density at each layer is n0�r�= �
0−Vho�r�� /g2D,
where we have neglected the effect of the tunneling energy J
since it is very small in the deep optical lattice regime. Also,

0=��r

8/��Na /as� is the chemical potential at each
layer, where N is the number of atoms at each layer. In this
system, we have two energy scales: the chemical potential of
each layer 
0	s1/8 which is associated with the radial plane
and the tunneling energy J	se−
s which is associated with
the density modulation along the z axis. The strength of the
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chemical potential can be enhanced by increasing the lattice
depth or by increasing the number of atoms. The tunneling
energy J decreases with the increasing of the lattice depth.

We linearize the hydrodynamic equations around the equi-
librium state, as nj =n0+�nj and 	 j =�	 j. The equations of
motion for the density and phase fluctuation becomes

�ṅj = −
�

M
�r · �n0�r��r�	 j� +

2J

�
n0�r��2�	 j − �	 j−1 − �	 j+1�

�9�

and

��	̇ j = − g2D�nj −
J

2n0�r�
�2�nj − �nj−1 − �nj+1� . �10�

Note that the second term of the right hand side of Eq. �10�
is proportional to the small parameter J and inversely pro-
portional to the large parameter n0�r=0�=
0 /g2D. Therefore,
we can neglect the term which is proportional to the
J /2n0�r�. After some algebra, we get second order equation
of motion for the density fluctuation as

�n̈j =
g2D

M
�r · �n0�r��r�nj� −

2Jg2D

�2 n0�r��2�nj − �nj−1

− �nj+1� . �11�

The above equation tells us that the density fluctuation at
each layer j is coupled with the nearest-neighbor layers j±1.
We seek the normal mode solutions of the density fluctua-
tions at layer j in the following form:

�nj = �n�r�ei�jkd−�l�k�t�. �12�

Here, k is Bloch wave vector �quasi-momentum� of the ex-
citations. The Bloch wave vector p which is associated with
the velocity of the condensate in the optical lattice is set to
zero.

Substituting the above equation into Eq. �11�, we get

− �l
2�k��n =

g2D

M
�r · �n0�r�n� −

8Jg2D

�2 n0�r�sin2�kd/2��n ,

�13�

where l is a set of two quantum numbers: radial quantum
number, nr and the angular quantum number m. The param-
eter J
 in front of the sin2�kd� term determines the strength
of the coupling between the inhomogeneous density in the
radial plane and the density modulation along the z axis.

For k=0, the solutions are known exactly and analytically
�25�. The energy spectrum and the normalized eigen func-
tions, respectively, are given as, �l

2=�r
2��m�+2nr�nr+ �m�

+1�� and

�n�r,�� =
�1 + 2nr + �m��1/2

��R0
2�1/2 r̃�m�Pnr

��m�,0��1 − 2r̃2�eim�.

�14�

Here, Pn
�a,b��x� is the Jacobi polynomial of order n and �

is the polar angle. The radius of each condensate layer is
R0=2
0 /M�r

2 and r̃=r /R0 is the dimensionless variable.

The solution of Eq. �13� can be obtained for arbitrary
value of k by numerical diagonalization. For k�0, we can
expand the density fluctuations as

�n�r� = �
l

bl�nl�r,�� . �15�

Substituting the above expansion into Eq. �13�, we obtain

0 = ��̃l
2 − ��m� + 2nr�nr + �m� + 1�� − B0sin2�kd/2��bl

+ B0sin2�kd/2��
l�

Mll�bl�, �16�

where �̃l=�l /�r and the dimensionless parameter B0 is de-
fined as

B0 =
8J
0

�2�r
2 . �17�

The matrix element Mll� is given by

Mll� =
�1 + 2nr + �m��

�
� d2r̃r̃2+�m�+�m��ei�m−m���

�Pnr�
��m��,0��1 − 2r̃2�Pnr

��m�,0��1 − 2r̃2� . �18�

The above eigenvalue problem is block diagonal with no
overlap between the subspaces of different angular momen-
tum, so that the solutions to Eq. �16� can be obtained sepa-
rately in each angular momentum subspace. We can obtain
all low-energy multibranch Bogoliubov-Bloch spectrum
from Eq. �16� which is our main result. Equations �16� and
�18� show that the spectrum depends on average over the
radial coordinate and the coupling among the modes within a
given angular momentum symmetry for any finite value of k.
Particularly, the couplings among all other modes are impor-
tant for large values of kd and B0. It is interesting to note that
the curvature of a mode spectrum depends on a single pa-
rameter B0 which is defined in Eq. �17�. The parameter B0
can remain unchanged by changing values of the J and 
0 in
a various combination. Therefore, the curvatures of the spec-
trum of a given mode for various combinations of J and 
0
with fixed B0 are the same.

Before presenting the exact numerical results, we make
some approximation for a quantitative discussions. If we ne-
glect the couplings among all other modes in the m=0 sector
by setting l�= �nr ,0� in Eqs. �16� and �18�, one can easily get
following spectrum:

�̃nr

2 = 2nr�nr + 1� + �1 − Mnr,nr
�B0sin2�kd/2� . �19�

The above equation can also be obtained by using first-order
perturbation theory to Eq. �13�. In the limit of long wave-
length, the nr=0 mode is phonon like with a sound velocity
c0=

0 /2M*, where M*=�2 /2Jd2 is the effective mass of
the atoms in the optical potential. This sound velocity exactly
matches with the result obtained in Ref. �14� and is similar to
the result obtained without optical potential �20�. This sound
velocity is smaller by a factor of 
2 with respect to the sound
velocity obtained previously �16–19� for quasi-1D Bose gas
placed in an optical potential. This is due to the effect of the
average over the radial variable which can be seen from Eqs.
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�16� and �18�. In Fig. 1 we show few low-energy multibranch
Bogoliubov-Bloch spectrum in the m=0 sector as a function
of kd by solving the matrix �16�.

The lowest branch corresponds to the Bogoliubov-Bloch
axial mode with no radial nodes. This mode has the usual
form �r=csk at low momenta, where cs is the real sound
velocity. Note that cs�c0 which implies that the dispersion
relations are modified due to the coupling among all other
modes. The changes in the spectrum is clearly visible in the
central part of the Brillouin zone. This is due to the fact that
the mode coupling is strong enough in the central part of the
Brillouin zone due to the particular nature of the k-dependent
part �see Eq. �16��. The second branch corresponds to
one radial node and starts at 2�r for k=0. The breathing
mode has the free-particle dispersion relation and it can be
written in terms of the effective mass �mb

*� of this mode as
�2�k�=2�r+�k2 /2mb

*. Figure 1 shows that the mode cou-
pling does not affect the breathing mode spectrum apprecia-
bly. The third and fourth lowest-energy modes are also given
in Fig. 1. These modes are also changed in the central part of
the Brillouin zone due to the mode coupling. One could see
from Fig. 1 that the effective masses of each modes are dif-
ferent. The group velocity along the z direction deviates from
its long-wavelength limit when kd	�. The mode coupling
induced by the sin2�kd� perturbation in Eq. �11� becomes
more significant with increasing k and has the effect of low-
ering the sound speed. This coupling is associated with the
interplay of the density modulation along the z direction and
the strong inhomogeneity of the equilibrium density in the
radial direction in each plane. The effective masses are nega-
tive when kd�.

The coupling between the transverse quadrupole modes
�m= ±2� and the modes in the m� ±2 sector does not exist
since these modes are orthogonal to each other as it can be
seen from Eq. �18�. However, the lowest energy quadrupole
spectrum �nr=0,m= ±2� strongly depends on other low-
energy quadrupole modes with various discrete radial nodes
�nr�0,m= ±2�. We neglect the couplings among all other
modes in the m= ±2 sector by setting l�= �nr ,2� in Eqs. �16�

and �18�, then one can easily get following spectrum:

�̃nr

2 = 2 + 2nr�nr + 3� + �1 − Mnr,2;nr,2
�B0sin2�kd/2� .

�20�

In Fig. 2, we present first two low-energy MBBS for
quadrupole modes. Figure 2 clearly shows that the mode-
coupling also reduces the spectrum for the quadrupole modes
in the central part of the Brillouin zone. In Ref. �23�, the
spectrum for the breathing and the lowest energy quadrupole
modes are obtained analytically within the Gaussian varia-
tional analysis. The mode coupling was not considered in
this variational analysis �23�. In Fig. 3, we compare the spec-
trum of the breathing and lowest energy quadrupole modes
obtained from Eq. �16� with those of obtained in Ref. �23�. It
is clear from Fig. 3 that the mode-coupling reduces the spec-
trum strongly and it should be taken into account for calcu-
lating the spectrum correctly.

FIG. 1. Plots of the low-energy Bogoliubov-Bloch modes in the
m=0 sector. Here, J=0.1��r and 
0=50��r. Solid and dashed
lines are obtained from Eqs. �16� and �19�, respectively

FIG. 2. Plots of the low-energy Bogoliubov-Bloch modes in the
m= ±2 sector. Here, J=0.1��r and 
0=50��r. Solid and dashed
lines are obtained from Eqs. �16� and �20�

FIG. 3. Plots of the spectrum of breathing and lowest-energy
quadrupole modes. Here, J=0.1��r and 
0=50��r. Solid and
dashed lines are obtained from Eq. �16� and Ref. �23�, respectively

T. K. GHOSH AND K. MACHIDA PHYSICAL REVIEW A 72, 053623 �2005�

053623-4



III. SUMMARY AND CONCLUSIONS

In this work, we have studied excitation energies of the
axial quasiparticles with various discrete radial nodes of an
array of weakly coupled quasi-two-dimensional Bose con-
densates. Our discretize hydrodynamic description enables
us to produce correctly all low-energy MBBS by including
the mode couplings among different modes within the same
angular momentum sector. We found that the mode coupling
strongly changes the spectrum. Therefore, it should be taken
into account to calculate such spectrum correctly. The mode
coupling is strong enough in the central part of the Brillouin
zone. The single parameter B0, defined in Eq. �17�, is iden-
tified which is always associated with the k-dependent part
and it scales with the product of two energy scales of this
system, namely, J and 
0. The parameter B0 is a good mea-
sure for determination of the effect of the optical lattices on
the spectrum. Particularly, the spectrum for the phonon and
breathing modes can be observed in a Bragg scattering ex-
periments �26� as discussed below. The MBBS can be ob-
served in the Bragg scattering experiments as the MBS was
observed in Ref. �22�. Due to the axial symmetry, the modes
having only zero angular momentum can be excited in the
Bragg scattering experiments. In the Bragg spectroscopy, the

condensate is excited by an external moving optical potential
V=VB�t�cos�kz−�t�, where VB�t� is the intensity of the
Bragg pulses. This optical potential is created by using two
Bragg pulses with approximately parallel polarization, sepa-
rated by an angle 	. The pulses have a frequency difference
� determined by two acousto-optic modulators. The wave
vector k is adjusted to be along the z axis. Both the values of
k and � can be tuned by changing the angle between two
beams and varying their frequency difference. For small val-
ues of k the system is excited in the phonon regime and the
response is detected by measuring the net momentum
Pz�� ,k� imparted to the system by the Bragg pulses. The
multibranch Bogoliubov spectrum is obtained by observing
the locations of the peaks in Pz�� ,k� for various values of k.
The frequency � must be comparable to radial trap fre-
quency �r in order to excite the breathing and other modes.
The duration of the Bragg pulses must be larger than the
radial trapping period TB2� /�r in order to have large
populations of the radial quasiparticle states.
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