18 research outputs found

    Coupled-mode theory for periodic side-coupled microcavity and photonic crystal structures

    Full text link
    We use a phenomenological Hamiltonian approach to derive a set of coupled mode equations that describe light propagation in waveguides that are periodically side-coupled to microcavities. The structure exhibits both Bragg gap and (polariton like) resonator gap in the dispersion relation. The origin and physical significance of the two types of gaps are discussed. The coupled-mode equations derived from the effective field formalism are valid deep within the Bragg gaps and resonator gaps.Comment: 13 pages, 6 figure

    Gamma-smooth muscle actin expression is associated with epithelial-mesenchymal transition and stem-like properties in hepatocellular carcinoma

    Get PDF
    BACKGROUND AND AIMS: The prognosis of hepatocellular carcinoma (HCC) is hampered by frequent tumour recurrence and metastases. Epithelial-Mesenchymal Transition (EMT) is now recognized as a key process in tumour invasion, metastasis and the generation of cancer initiating cells. The morphological identification of EMT in tumour samples from the expression of novel mesenchymal markers could provide relevant prognostic information and aid in understanding the metastatic process. METHODS: The expression of Smooth Muscle Actins was studied using immunofluorescence and immunohistochemistry assays in cultured liver cells during an induced EMT process and in liver specimens from adult and paediatric HCC series. RESULTS: We report here that in HCC cell lines treated with TGF-beta and in HCC specimens, the expression of alphaSMA, a known mesenchymal marker of EMT, could never be detected. In addition, our in vitro studies identified the enteric form of SMA, gammaSMA, as being a marker of EMT. Moreover, this SMA isoform was expressed in 46% of 58 tumours from 42 adult HCC patients and in 90% of 16 tumours from 12 paediatric HCC patients. Interestingly, this expression was significantly correlated with poor tumour differentiation and progenitor cell features characterized by the expression of EpCAM and K19. CONCLUSION: Taken together, our results support the conclusion that gammaSMA expression in HCC is strongly correlated with the EMT process, HCC aggressiveness and the identification of cancer stem cells. This correlation suggests that gammaSMA represents a novel and powerful marker to predict HCC progression

    Mathematical Modelling as a Proof of Concept for MPNs as a Human Inflammation Model for Cancer Development

    Get PDF
    <p><b>Left:</b> Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells (stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage, the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline. Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an approximately exponential increase in the MPN stem cells, and the development is closely followed by the mature MPN cells. <b>Right:</b> B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV, and PMF, respectively) defined as the ratio of MPN mature cells to the total number of mature cells.</p

    HCV core-mediated activation of latent TGF-β via thrombospondin drives the crosstalk between hepatocytes and stromal environment

    No full text
    The mechanisms by which fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) develop during chronic hepatitis C virus (HCV) infection are not fully understood. We previously observed that HCV core protein induced a TGF-β-dependent epithelial mesenchymal transition, a process contributing to the promotion of cell invasion and metastasis by impacting TGF-β1 signalling. Here we investigated HCV core capacity to drive increased expression of the active form of TGF-β1n transgenic mice and hepatoma cell lines

    Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer

    No full text
    The metastatic progression of cancer remains a major issue in patient treatment. Yet, the molecular and cellular mechanisms underlying this process remains unclear. Here, we use primary explants and organoids from patients harboring mucinous colorectal carcinoma (MUC CRC), a poor prognosis histological form of digestive cancers, to study the architecture, invasive behavior and chemoresistance of tumor cell intermediates. We report that these tumors maintain a robust apico-basolateral polarity as they spread in the peritumoral stroma or organotypic collagen-I gels. We identified two distinct topologies: MUC CRCs either display a conventional "apical-in" polarity or, more frequently, harbor an inverted "apical-out" topology. Transcriptomic analyses combined with interference experiments on organoids showed that TGFb and focal adhesion signaling pathways are the main drivers of polarity orientation. Finally, this apical-out topology is associated with increased resistance to chemotherapeutic treatments in organoids and decreased patient survival in the clinic. Thus, patient-derived organoids have the potential to bridge histological, cellular and molecular analyses to decrypt onco-morphogenic programs and stratify cancer patients
    corecore