7,610 research outputs found

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Dilatancy transition in a granular model

    Full text link
    We introduce a model of granular matter and use a stress ensemble to analyze shearing. Monte Carlo simulation shows the model to exhibit a second order phase transition, associated with the onset of dilatancy.Comment: Future versions can be obtained from: http://www.ma.utexas.edu/users/radin/papers/shear2.pd

    Probing pre-formed alpha particles in the ground state of nuclei

    Full text link
    In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.Comment: 4 pages, 3 figure

    Explanation of the Gibbs paradox within the framework of quantum thermodynamics

    Full text link
    The issue of the Gibbs paradox is that when considering mixing of two gases within classical thermodynamics, the entropy of mixing appears to be a discontinuous function of the difference between the gases: it is finite for whatever small difference, but vanishes for identical gases. The resolution offered in the literature, with help of quantum mixing entropy, was later shown to be unsatisfactory precisely where it sought to resolve the paradox. Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining the paradox, since it does not deal explicitly with the difference between the gases. The proper approach employs quantum thermodynamics, which deals with finite quantum systems coupled to a large bath and a macroscopic work source. Within quantum thermodynamics, entropy generally looses its dominant place and the target of the paradox is naturally shifted to the decrease of the maximally available work before and after mixing (mixing ergotropy). In contrast to entropy this is an unambiguous quantity. For almost identical gases the mixing ergotropy continuously goes to zero, thus resolving the paradox. In this approach the concept of ``difference between the gases'' gets a clear operational meaning related to the possibilities of controlling the involved quantum states. Difficulties which prevent resolutions of the paradox in its entropic formulation do not arise here. The mixing ergotropy has several counter-intuitive features. It can increase when less precise operations are allowed. In the quantum situation (in contrast to the classical one) the mixing ergotropy can also increase when decreasing the degree of mixing between the gases, or when decreasing their distinguishability. These points go against a direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte

    Critical Exponents for Diluted Resistor Networks

    Full text link
    An approach by Stephen is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky. By a decomposition of the principal Feynman diagrams we obtain a type of diagrams which again can be interpreted as resistor networks. This new interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent ϕ\phi up to second order in ϵ=6d\epsilon=6-d, where dd is the spatial dimension. Our result ϕ=1+ϵ/42+4ϵ2/3087\phi=1+\epsilon /42 +4\epsilon^2 /3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts--model formulation of the random resistor network.Comment: 27 pages, 14 figure

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy

    Full text link
    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic protons (EpNN > 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter
    corecore